Suppr超能文献

无限状态空间马尔可夫链的简化与随机基因表达爆发的数学理论。

Simplification of Markov chains with infinite state space and the mathematical theory of random gene expression bursts.

机构信息

Department of Mathematical Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA.

出版信息

Phys Rev E. 2017 Sep;96(3-1):032402. doi: 10.1103/PhysRevE.96.032402. Epub 2017 Sep 5.

Abstract

Here we develop an effective approach to simplify two-time-scale Markov chains with infinite state spaces by removal of states with fast leaving rates, which improves the simplification method of finite Markov chains. We introduce the concept of fast transition paths and show that the effective transitions of the reduced chain can be represented as the superposition of the direct transitions and the indirect transitions via all the fast transition paths. Furthermore, we apply our simplification approach to the standard Markov model of single-cell stochastic gene expression and provide a mathematical theory of random gene expression bursts. We give the precise mathematical conditions for the bursting kinetics of both mRNAs and proteins. It turns out that random bursts exactly correspond to the fast transition paths of the Markov model. This helps us gain a better understanding of the physics behind the bursting kinetics as an emergent behavior from the fundamental multiscale biochemical reaction kinetics of stochastic gene expression.

摘要

我们提出了一种有效方法,通过去除具有快速离开速率的状态来简化具有无限状态空间的双时间尺度马尔可夫链,从而改进了有限马尔可夫链的简化方法。我们引入了快速转移路径的概念,并表明简化链的有效转移可以表示为直接转移和通过所有快速转移路径的间接转移的叠加。此外,我们将简化方法应用于单细胞随机基因表达的标准马尔可夫模型,并提供了随机基因表达爆发的数学理论。我们给出了 mRNA 和蛋白质爆发动力学的精确数学条件。结果表明,随机爆发与马尔可夫模型的快速转移路径完全对应。这有助于我们更好地理解爆发动力学背后的物理机制,因为它是从随机基因表达的基本多尺度生化反应动力学中涌现出来的行为。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验