Suppr超能文献

线粒体功能障碍和烟酰胺腺嘌呤二核苷酸分解代谢作为细胞死亡的机制和神经保护的有前途的靶点。

Mitochondrial dysfunction and nicotinamide dinucleotide catabolism as mechanisms of cell death and promising targets for neuroprotection.

机构信息

Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research, School of Medicine, University of Maryland Baltimore, Baltimore, Maryland 21201, USA.

出版信息

J Neurosci Res. 2011 Dec;89(12):1946-55. doi: 10.1002/jnr.22626. Epub 2011 Apr 12.

Abstract

Both acute and chronic neurodegenerative diseases are frequently associated with mitochondrial dysfunction as an essential component of mechanisms leading to brain damage. Although loss of mitochondrial functions resulting from prolonged activation of the mitochondrial permeability transition (MPT) pore has been shown to play a significant role in perturbation of cellular bioenergetics and in cell death, the detailed mechanisms are still elusive. Enzymatic reactions linked to glycolysis, the tricarboxylic acid cycle, and mitochondrial respiration are dependent on the reduced or oxidized form of nicotinamide dinucleotide [NAD(H)] as a cofactor. Loss of mitochondrial NAD(+) resulting from MPT pore opening, although transient, allows detrimental depletion of mitochondrial and cellular NAD(+) pools by activated NAD(+) glycohydrolases. Poly(ADP-ribose) polymerase (PARP) is considered to be a major NAD(+) degrading enzyme, particularly under conditions of extensive DNA damage. We propose that CD38, a main cellular NAD(+) level regulator, can significantly contribute to NAD(+) catabolism. We discuss NAD(+) catabolic and NAD(+) synthesis pathways and their role in different strategies to prevent cellular NAD(+) degradation in brain, particularly following an ischemic insult. These therapeutic approaches are based on utilizing endogenous intermediates of NAD(+) metabolism that feed into the NAD(+) salvage pathway and also inhibit CD38 activity.

摘要

急性和慢性神经退行性疾病通常与线粒体功能障碍有关,线粒体功能障碍是导致脑损伤的机制的重要组成部分。虽然由于线粒体通透性转换(MPT)孔的长期激活导致的线粒体功能丧失已被证明在细胞生物能量紊乱和细胞死亡中起重要作用,但详细的机制仍不清楚。与糖酵解、三羧酸循环和线粒体呼吸相关的酶反应依赖于烟酰胺二核苷酸[NAD(H)]的还原或氧化形式作为辅助因子。尽管 MPT 孔打开导致的线粒体 NAD(+)的丢失是短暂的,但激活的 NAD(+)糖苷水解酶允许线粒体和细胞 NAD(+)池的有害耗竭。聚(ADP-核糖)聚合酶(PARP)被认为是主要的 NAD(+)降解酶,特别是在广泛的 DNA 损伤条件下。我们提出,细胞内 NAD(+)水平调节剂 CD38 可以显著促进 NAD(+)分解代谢。我们讨论了 NAD(+)分解代谢和 NAD(+)合成途径及其在不同策略中的作用,以防止脑内细胞 NAD(+)降解,特别是在缺血性损伤后。这些治疗方法基于利用 NAD(+)代谢的内源性中间产物,这些中间产物进入 NAD(+)补救途径,同时抑制 CD38 活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验