1 Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales , Sydney, Australia .
2 Australasian Research Institute , Sydney Adventist Hospital, Sydney, Australia .
Antioxid Redox Signal. 2019 Jan 10;30(2):251-294. doi: 10.1089/ars.2017.7269. Epub 2018 May 11.
Nicotinamide adenine dinucleotide (NAD) is an essential pyridine nucleotide that serves as an essential cofactor and substrate for a number of critical cellular processes involved in oxidative phosphorylation and ATP production, DNA repair, epigenetically modulated gene expression, intracellular calcium signaling, and immunological functions. NAD depletion may occur in response to either excessive DNA damage due to free radical or ultraviolet attack, resulting in significant poly(ADP-ribose) polymerase (PARP) activation and a high turnover and subsequent depletion of NAD, and/or chronic immune activation and inflammatory cytokine production resulting in accelerated CD38 activity and decline in NAD levels. Recent studies have shown that enhancing NAD levels can profoundly reduce oxidative cell damage in catabolic tissue, including the brain. Therefore, promotion of intracellular NAD anabolism represents a promising therapeutic strategy for age-associated degenerative diseases in general, and is essential to the effective realization of multiple benefits of healthy sirtuin activity. The kynurenine pathway represents the NAD synthesis pathway in mammalian cells. NAD can also be produced by the NAD salvage pathway. In this review, we describe and discuss recent insights regarding the efficacy and benefits of the NAD precursors, nicotinamide (NAM), nicotinic acid (NA), nicotinamide riboside (NR), and nicotinamide mononucleotide (NMN), in attenuating NAD decline in degenerative disease states and physiological aging. Results obtained in recent years have shown that NAD precursors can play important protective roles in several diseases. However, in some cases, these precursors may vary in their ability to enhance NAD synthesis their location in the NAD anabolic pathway. Increased synthesis of NAD promotes protective cell responses, further demonstrating that NAD is a regulatory molecule associated with several biochemical pathways. In the next few years, the refinement of personalized therapy for the use of NAD precursors and improved detection methodologies allowing the administration of specific NAD precursors in the context of patients' NAD levels will lead to a better understanding of the therapeutic role of NAD precursors in human diseases.
烟酰胺腺嘌呤二核苷酸(NAD)是一种必需的吡啶核苷酸,作为氧化磷酸化和 ATP 产生、DNA 修复、表观遗传调节基因表达、细胞内钙信号和免疫功能等许多关键细胞过程的必需辅助因子和底物。NAD 的消耗可能是由于自由基或紫外线攻击导致的过多 DNA 损伤引起的,导致显著的多聚(ADP-核糖)聚合酶(PARP)激活以及 NAD 的高周转率和随后的消耗,和/或慢性免疫激活和炎症细胞因子产生导致加速 CD38 活性和 NAD 水平下降。最近的研究表明,增强 NAD 水平可以显著减少分解代谢组织(包括大脑)中的氧化细胞损伤。因此,促进细胞内 NAD 合成代表了一种有前途的治疗一般与年龄相关的退行性疾病的策略,对于有效实现健康的 Sirtuin 活性的多种益处至关重要。犬尿氨酸途径代表哺乳动物细胞中的 NAD 合成途径。NAD 也可以通过 NAD 回收途径产生。在这篇综述中,我们描述并讨论了最近关于 NAD 前体,烟酰胺(NAM)、烟酸(NA)、烟酰胺核苷(NR)和烟酰胺单核苷酸(NMN)的疗效和益处的见解,这些前体在减轻退行性疾病状态和生理衰老过程中 NAD 的下降。近年来的研究结果表明,NAD 前体可以在几种疾病中发挥重要的保护作用。然而,在某些情况下,这些前体可能在增强 NAD 合成的能力及其在 NAD 合成途径中的位置上有所不同。NAD 合成的增加促进了保护性细胞反应,进一步证明 NAD 是与几种生化途径相关的调节分子。在未来几年,NAD 前体的个性化治疗的细化以及允许在患者 NAD 水平的背景下给予特定 NAD 前体的检测方法的改进,将导致更好地理解 NAD 前体在人类疾病中的治疗作用。