Technische Universität Berlin, Institute of Chemistry, Strasse des 17.Juni 124, 10623 Berlin, Germany.
Langmuir. 2011 May 17;27(10):6511-8. doi: 10.1021/la200316b. Epub 2011 Apr 13.
Platinum and palladium nanoparticles, supported and stabilized by polymeric core-shell architectures, proved to be active catalysts for hydrogenation reactions. Here, two different reactions were used as probes to investigate the influence of the polymeric support: the hydrogenation of α-methyl styrene (AMS) to cumene and the partial hydrogenation of 1,5-cyclooctadiene (COD). We found that the stability of the nanoparticles and the rate of reaction are higher in the presence of a hydrophobic octadecyl shell within a three-shell polymer system. The kinetic study of AMS hydrogenation showed much higher activities for palladium nanoparticles than for platinum nanoparticles, and the obtained results (e.g., 35 kJ/mol for the activation energy) are of the same order of magnitude as reported earlier for palladium supported on alumina. A methanol/n-heptane biphasic mixture was tested for catalyst recycling and allowed for highly efficient catalyst separation with very low metal leaching.
负载于聚合核壳结构上的铂和钯纳米粒子被证实是氢化反应的活性催化剂。在此,我们使用两种不同的反应作为探针来研究聚合载体的影响:α-甲基苯乙烯(AMS)氢化生成异丙苯和 1,5-环辛二烯(COD)部分氢化。我们发现,在具有疏水性十八烷基壳的三壳聚合物体系中,纳米粒子的稳定性和反应速率更高。AMS 氢化的动力学研究表明,钯纳米粒子比铂纳米粒子具有更高的活性,并且得到的结果(例如,活化能为 35 kJ/mol)与之前报道的氧化铝负载钯的结果处于同一数量级。甲醇/正庚烷两相混合物被测试用于催化剂回收,并允许使用非常低的金属浸出进行高效的催化剂分离。