Suppr超能文献

骨再生中的血管生成。

Angiogenesis in bone regeneration.

机构信息

University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA 19104-4539, United States.

出版信息

Injury. 2011 Jun;42(6):556-61. doi: 10.1016/j.injury.2011.03.035. Epub 2011 Apr 12.

Abstract

Angiogenesis is a key component of bone repair. New blood vessels bring oxygen and nutrients to the highly metabolically active regenerating callus and serve as a route for inflammatory cells and cartilage and bone precursor cells to reach the injury site. Angiogenesis is regulated by a variety of growth factors, notably vascular endothelial growth factor (VEGF), which are produced by inflammatory cells and stromal cells to induce blood vessel in-growth. A variety of studies with transgenic and gene-targeted mice have demonstrated the importance of angiogenesis in fracture healing, and have provided insights into regulatory processes governing fracture angiogenesis. Indeed, in animal models enhancing angiogenesis promotes bone regeneration, suggesting that modifying fracture vascularization could be a viable therapeutic approach for accelerated/improved bone regeneration clinically.

摘要

血管生成是骨修复的关键组成部分。新血管为高度代谢活跃的再生骨痂带来氧气和营养,并为炎症细胞以及软骨和骨祖细胞到达损伤部位提供途径。血管生成受多种生长因子调节,特别是血管内皮生长因子(VEGF),它由炎症细胞和成纤维细胞产生,以诱导血管内生长。多种转基因和基因靶向小鼠的研究表明了血管生成在骨折愈合中的重要性,并为调控骨折血管生成的机制提供了新的见解。事实上,在动物模型中,增强血管生成可促进骨再生,这表明改变骨折的血管化可能是一种可行的治疗方法,以加速/改善临床骨再生。

相似文献

1
Angiogenesis in bone regeneration.
Injury. 2011 Jun;42(6):556-61. doi: 10.1016/j.injury.2011.03.035. Epub 2011 Apr 12.
2
Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover.
Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):9656-61. doi: 10.1073/pnas.152324099. Epub 2002 Jul 12.
4
Role of angiogenesis on bone formation.
Histol Histopathol. 2012 May;27(5):559-66. doi: 10.14670/HH-27.559.
5
Fracture vascularity and bone healing: a systematic review of the role of VEGF.
Injury. 2008 Sep;39 Suppl 2:S45-57. doi: 10.1016/S0020-1383(08)70015-9.
6
Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration.
Bone. 2015 Jan;70:19-27. doi: 10.1016/j.bone.2014.09.017. Epub 2014 Sep 28.
7
Biglycan modulates angiogenesis and bone formation during fracture healing.
Matrix Biol. 2014 Apr;35:223-31. doi: 10.1016/j.matbio.2013.12.004. Epub 2013 Dec 25.
8
Angiogenesis in fracture repair.
Clin Orthop Relat Res. 1998 Oct(355 Suppl):S82-9. doi: 10.1097/00003086-199810001-00010.
10
Effect of age on vascularization during fracture repair.
J Orthop Res. 2008 Oct;26(10):1384-9. doi: 10.1002/jor.20667.

引用本文的文献

1
2
Novel Nanomaterials for Developing Bone Scaffolds and Tissue Regeneration.
Nanomaterials (Basel). 2025 Aug 5;15(15):1198. doi: 10.3390/nano15151198.
3
The Role of Heparan Sulfate in Bone Repair and Regeneration.
Calcif Tissue Int. 2025 Jul 24;116(1):102. doi: 10.1007/s00223-025-01413-6.
4
Enhancing Bone Repair with β-TCP-Based Composite Scaffolds: A Review of Design Strategies and Biological Mechanisms.
Orthop Res Rev. 2025 Jul 14;17:313-340. doi: 10.2147/ORR.S525959. eCollection 2025.
5
Recapitulating the bone extracellular matrix through 3D bioprinting using various crosslinking chemistries.
Front Bioeng Biotechnol. 2025 Jun 5;13:1506122. doi: 10.3389/fbioe.2025.1506122. eCollection 2025.
7
Advancement in smart bone implants: the latest multifunctional strategies and synergistic mechanisms for tissue repair and regeneration.
Bioact Mater. 2025 May 19;51:333-382. doi: 10.1016/j.bioactmat.2025.05.004. eCollection 2025 Sep.
8
Glucocorticoid-induced osteoporosis in children: emerging vascular and molecular targets.
Curr Opin Pediatr. 2025 Aug 1;37(4):390-397. doi: 10.1097/MOP.0000000000001476. Epub 2025 Jun 2.
9
DRaCOon: a novel algorithm for pathway-level differential co-expression analysis in transcriptomics.
BMC Bioinformatics. 2025 May 26;26(1):137. doi: 10.1186/s12859-025-06162-9.
10
High VEGF Secretion Using Co and B Co-doped Bioactive Mesoporous Glass Nanoparticles for Enhanced Angiogenesis.
ACS Omega. 2025 May 6;10(19):19735-19749. doi: 10.1021/acsomega.5c00874. eCollection 2025 May 20.

本文引用的文献

1
Endothelial progenitor cells promote fracture healing in a segmental bone defect model.
J Orthop Res. 2010 Aug;28(8):1007-14. doi: 10.1002/jor.21083.
2
A comparison of the effects of ibuprofen and rofecoxib on rabbit fibula osteotomy healing.
Acta Orthop. 2009 Oct;80(5):597-605. doi: 10.3109/17453670903316769.
3
The synergistic effect of autograft and BMP-7 in the treatment of atrophic nonunions.
Clin Orthop Relat Res. 2009 Dec;467(12):3239-48. doi: 10.1007/s11999-009-0846-2. Epub 2009 Apr 24.
5
Thrombospondin-2 influences the proportion of cartilage and bone during fracture healing.
J Bone Miner Res. 2009 Jun;24(6):1043-54. doi: 10.1359/jbmr.090101.
6
COX-2 from the injury milieu is critical for the initiation of periosteal progenitor cell mediated bone healing.
Bone. 2008 Dec;43(6):1075-83. doi: 10.1016/j.bone.2008.08.109. Epub 2008 Aug 16.
7
Development of a femoral non-union model in the mouse.
Injury. 2008 Oct;39(10):1119-26. doi: 10.1016/j.injury.2008.04.008. Epub 2008 Jul 25.
8
Effect of cell-based VEGF gene therapy on healing of a segmental bone defect.
J Orthop Res. 2009 Jan;27(1):8-14. doi: 10.1002/jor.20658.
9
Effect of age on vascularization during fracture repair.
J Orthop Res. 2008 Oct;26(10):1384-9. doi: 10.1002/jor.20667.
10
Bone formation during distraction osteogenesis is dependent on both VEGFR1 and VEGFR2 signaling.
J Bone Miner Res. 2008 May;23(5):596-609. doi: 10.1359/jbmr.080103.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验