文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过使用各种交联化学方法的3D生物打印来重现骨细胞外基质。

Recapitulating the bone extracellular matrix through 3D bioprinting using various crosslinking chemistries.

作者信息

Parmentier Laurens, Vermeersch Edward, Van Vlierberghe Sandra

机构信息

Department of Organic and Macromolecular Chemistry, Faculty of sciences, Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Ghent University, Ghent, Belgium.

出版信息

Front Bioeng Biotechnol. 2025 Jun 5;13:1506122. doi: 10.3389/fbioe.2025.1506122. eCollection 2025.


DOI:10.3389/fbioe.2025.1506122
PMID:40539097
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12177472/
Abstract

Bioprinting allows to spatially organize cellular niches influencing mechanobiology into tissue engineered constructs thereby aiming to achieve a similar functional complexity as the various tissues present within bone. Natural polymer hydrogel matrices are favorably selected as part of many bioinks thanks to their level of mimicry with the bone osteoid matrix. More specifically, a variety of biophysical and biochemical cues targeting osteogenesis can be presented towards cells encapsulated in bioprinted constructs. This review focusses on delineating bioprinting targeting osteogenesis based on the printing approach (deposition-versus light-based bioprinting) and crosslinking chemistry utilized (chain- versus step-growth crosslinking). Moreover, the cell-biomaterial interactions at play within these constructs are addressed in line with currently established mechanobiology concepts. The delicate interplay between the presented cues from the encapsulating matrix, the used printing process and the maturity, source and concentration of the used cell type finally dictates the osteoregenerative outcome of a bioprinted construct. Given the advantages towards cell encapsulation associated with step-growth systems, there is a huge need to evaluate these systems in comparison to the heavily reported chain-growth systems (predominantly gelatin-methacryloyl or GelMA) towards the bioprinting of constructs serving osteogenesis. Moreover, multiple bioprinting strategies should be combined to tackle key challenges in the field and enable functional and scalable hierarchical constructs serving osteogenesis with incorporation of vascularization and innervation.

摘要

生物打印能够在空间上组织影响力学生物学的细胞龛,使其进入组织工程构建体,从而旨在实现与骨骼中存在的各种组织相似的功能复杂性。天然聚合物水凝胶基质因其与骨类骨质基质的模拟程度而被优先选作许多生物墨水的一部分。更具体地说,可以向封装在生物打印构建体中的细胞呈现多种靶向成骨的生物物理和生化信号。本综述重点基于打印方法(沉积式与光基生物打印)和所采用的交联化学(链式与逐步增长交联)来描述靶向成骨的生物打印。此外,这些构建体内发生的细胞 - 生物材料相互作用是根据当前已确立的力学生物学概念来阐述的。来自封装基质的呈现信号、所使用的打印过程以及所用细胞类型的成熟度、来源和浓度之间的微妙相互作用最终决定了生物打印构建体的骨再生结果。鉴于逐步增长系统在细胞封装方面的优势,与大量报道的链式增长系统(主要是明胶 - 甲基丙烯酰基或GelMA)相比,迫切需要评估这些系统用于成骨构建体的生物打印。此外,应结合多种生物打印策略来应对该领域的关键挑战,并实现具有功能且可扩展的用于成骨的分层构建体,同时纳入血管化和神经支配。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1eb/12177472/bf679486c4b5/fbioe-13-1506122-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1eb/12177472/19aae015a30d/fbioe-13-1506122-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1eb/12177472/321638cf6da4/fbioe-13-1506122-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1eb/12177472/d6f1d397eb1f/fbioe-13-1506122-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1eb/12177472/78747af3593e/fbioe-13-1506122-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1eb/12177472/d0f31d3d14b9/fbioe-13-1506122-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1eb/12177472/ec1cbdf1eeff/fbioe-13-1506122-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1eb/12177472/5105152e81e3/fbioe-13-1506122-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1eb/12177472/cead5993c0e6/fbioe-13-1506122-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1eb/12177472/af6f044fc270/fbioe-13-1506122-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1eb/12177472/aa88cc71f9c6/fbioe-13-1506122-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1eb/12177472/13f3e8211ba8/fbioe-13-1506122-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1eb/12177472/c6ad45bdef6e/fbioe-13-1506122-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1eb/12177472/15516eb7306c/fbioe-13-1506122-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1eb/12177472/c461b3be5ce6/fbioe-13-1506122-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1eb/12177472/bf679486c4b5/fbioe-13-1506122-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1eb/12177472/19aae015a30d/fbioe-13-1506122-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1eb/12177472/321638cf6da4/fbioe-13-1506122-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1eb/12177472/d6f1d397eb1f/fbioe-13-1506122-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1eb/12177472/78747af3593e/fbioe-13-1506122-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1eb/12177472/d0f31d3d14b9/fbioe-13-1506122-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1eb/12177472/ec1cbdf1eeff/fbioe-13-1506122-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1eb/12177472/5105152e81e3/fbioe-13-1506122-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1eb/12177472/cead5993c0e6/fbioe-13-1506122-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1eb/12177472/af6f044fc270/fbioe-13-1506122-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1eb/12177472/aa88cc71f9c6/fbioe-13-1506122-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1eb/12177472/13f3e8211ba8/fbioe-13-1506122-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1eb/12177472/c6ad45bdef6e/fbioe-13-1506122-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1eb/12177472/15516eb7306c/fbioe-13-1506122-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1eb/12177472/c461b3be5ce6/fbioe-13-1506122-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1eb/12177472/bf679486c4b5/fbioe-13-1506122-g015.jpg

相似文献

[1]
Recapitulating the bone extracellular matrix through 3D bioprinting using various crosslinking chemistries.

Front Bioeng Biotechnol. 2025-6-5

[2]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.

Health Technol Assess. 2001

[3]
Suspension bioprinted whole intervertebral disc analogues enable regional stiffness- and hypoxia-regulated matrix secretion by primary human nucleus pulposus and annulus fibrosus cells.

Acta Biomater. 2025-6-15

[4]
Assessing the comparative effects of interventions in COPD: a tutorial on network meta-analysis for clinicians.

Respir Res. 2024-12-21

[5]
3D Printing Techniques and Their Applications to Organ-on-a-Chip Platforms: A Systematic Review.

Sensors (Basel). 2021-5-10

[6]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2021-4-19

[7]
Systematic review and economic analysis of the comparative effectiveness of different inhaled corticosteroids and their usage with long-acting beta2 agonists for the treatment of chronic asthma in adults and children aged 12 years and over.

Health Technol Assess. 2008-5

[8]
EORTC guidelines for the use of erythropoietic proteins in anaemic patients with cancer: 2006 update.

Eur J Cancer. 2007-1

[9]
Home treatment for mental health problems: a systematic review.

Health Technol Assess. 2001

[10]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of topotecan for ovarian cancer.

Health Technol Assess. 2001

本文引用的文献

[1]
Strategies for promoting neurovascularization in bone regeneration.

Mil Med Res. 2025-3-3

[2]
Enhanced osteogenic differentiation in hyaluronic acid methacrylate (HAMA) matrix: a comparative study of hPDC and hBMSC spheroids for bone tissue engineering.

Biofabrication. 2025-2-13

[3]
Volumetric bioprinting of the osteoid niche.

Biofabrication. 2025-1-24

[4]
Enhancing Fracture Healing with 3D Bioprinted Hif1a-Overexpressing BMSCs Hydrogel: A Novel Approach to Accelerated Bone Repair.

Adv Healthc Mater. 2025-1

[5]
bioprinted 3D model enhancing osteoblast-to-osteocyte differentiation.

Biofabrication. 2024-11-13

[6]
3D bioprinting of high-performance hydrogel with in-situ birth of stem cell spheroids.

Bioact Mater. 2024-9-29

[7]
3D Bioprinted Tissue-Engineered Bone with Enhanced Mechanical Strength and Bioactivities: Accelerating Bone Defect Repair through Sequential Immunomodulatory Properties.

Adv Healthc Mater. 2024-12

[8]
3D bioprinting of DPSCs with GelMA hydrogel of various concentrations for bone regeneration.

Tissue Cell. 2024-6

[9]
Engineering Large-Scale Self-Mineralizing Bone Organoids with Bone Matrix-Inspired Hydroxyapatite Hybrid Bioinks.

Adv Mater. 2024-7

[10]
Low-Concentration Gelatin Methacryloyl Hydrogel with Tunable 3D Extrusion Printability and Cytocompatibility: Exploring Quantitative Process Science and Biophysical Properties.

ACS Appl Bio Mater. 2024-5-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索