Parmentier Laurens, Vermeersch Edward, Van Vlierberghe Sandra
Department of Organic and Macromolecular Chemistry, Faculty of sciences, Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Ghent University, Ghent, Belgium.
Front Bioeng Biotechnol. 2025 Jun 5;13:1506122. doi: 10.3389/fbioe.2025.1506122. eCollection 2025.
Bioprinting allows to spatially organize cellular niches influencing mechanobiology into tissue engineered constructs thereby aiming to achieve a similar functional complexity as the various tissues present within bone. Natural polymer hydrogel matrices are favorably selected as part of many bioinks thanks to their level of mimicry with the bone osteoid matrix. More specifically, a variety of biophysical and biochemical cues targeting osteogenesis can be presented towards cells encapsulated in bioprinted constructs. This review focusses on delineating bioprinting targeting osteogenesis based on the printing approach (deposition-versus light-based bioprinting) and crosslinking chemistry utilized (chain- versus step-growth crosslinking). Moreover, the cell-biomaterial interactions at play within these constructs are addressed in line with currently established mechanobiology concepts. The delicate interplay between the presented cues from the encapsulating matrix, the used printing process and the maturity, source and concentration of the used cell type finally dictates the osteoregenerative outcome of a bioprinted construct. Given the advantages towards cell encapsulation associated with step-growth systems, there is a huge need to evaluate these systems in comparison to the heavily reported chain-growth systems (predominantly gelatin-methacryloyl or GelMA) towards the bioprinting of constructs serving osteogenesis. Moreover, multiple bioprinting strategies should be combined to tackle key challenges in the field and enable functional and scalable hierarchical constructs serving osteogenesis with incorporation of vascularization and innervation.
生物打印能够在空间上组织影响力学生物学的细胞龛,使其进入组织工程构建体,从而旨在实现与骨骼中存在的各种组织相似的功能复杂性。天然聚合物水凝胶基质因其与骨类骨质基质的模拟程度而被优先选作许多生物墨水的一部分。更具体地说,可以向封装在生物打印构建体中的细胞呈现多种靶向成骨的生物物理和生化信号。本综述重点基于打印方法(沉积式与光基生物打印)和所采用的交联化学(链式与逐步增长交联)来描述靶向成骨的生物打印。此外,这些构建体内发生的细胞 - 生物材料相互作用是根据当前已确立的力学生物学概念来阐述的。来自封装基质的呈现信号、所使用的打印过程以及所用细胞类型的成熟度、来源和浓度之间的微妙相互作用最终决定了生物打印构建体的骨再生结果。鉴于逐步增长系统在细胞封装方面的优势,与大量报道的链式增长系统(主要是明胶 - 甲基丙烯酰基或GelMA)相比,迫切需要评估这些系统用于成骨构建体的生物打印。此外,应结合多种生物打印策略来应对该领域的关键挑战,并实现具有功能且可扩展的用于成骨的分层构建体,同时纳入血管化和神经支配。
Front Bioeng Biotechnol. 2025-6-5
Sensors (Basel). 2021-5-10
Cochrane Database Syst Rev. 2021-4-19
Health Technol Assess. 2001
Mil Med Res. 2025-3-3
Biofabrication. 2025-1-24
Biofabrication. 2024-11-13
Bioact Mater. 2024-9-29