Vitázková Martina, Kurtuldu Fatih, Mutlu Nurshen, Zheng Kai, Xu Yan, Šuly Pavol, Münster Lukáš, Vargas-Osorio Zulema, Galusek Dušan, Michálek Martin
FunGlass, A. Dubček University of Trenčín, Študentská 2, 911 50 Trenčín, Slovakia.
Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China.
ACS Omega. 2025 May 6;10(19):19735-19749. doi: 10.1021/acsomega.5c00874. eCollection 2025 May 20.
This investigation presents a novel approach to engineering mesoporous bioactive glass nanoparticles (MBGNs) through selective ion doping. This method can significantly potentiate their physicochemical properties and biological performance. We elucidate the effects of boron (B) and cobalt (Co) doping, individually and in combination, on MBGNs' structural, functional, and biocompatible characteristics. Using microemulsion-assisted sol-gel synthesis, we fabricated MBGNs with sizes ranging from 150 to 250 nm and shapes that shifted from spherical to more irregular shapes upon co-doping, as observed by SEM and TEM. We assessed the materials' amorphous nature and molecular structure through XRD and FTIR, respectively, noting the preservation of bioactivity-associated Si-O-Si groups. This can influence the nucleation and growth of the mineral phases similar to those found in natural tissues, forming a bioactive coating on the material surface. Nitrogen adsorption-desorption isotherms confirmed a mesoporous structure with increased specific surface area upon co-doping. The release behavior of Ca and Si in simulated body fluids studied by ICP-OES indicated alterations after adding Co and B, modifying their release kinetics. Bone regeneration relies on osteogenesis and vascular network formation for nutrient and oxygen supply. This study highlights the synergistic effect of B and Co co-doping, enhancing both angiogenesis and osteogenesis beyond single-ion doping. Biocompatibility studies with MG-63 and HDFa cell lines indicated that B enhanced cell viability, while the viability effect of Co was concentration-dependent. Cytotoxicity was assessed through lactate dehydrogenase (LDH) assays and is shown in high concentrations in the case of reference and B-doped sample, which was significantly reduced in the case of co-doped material. The newly developed nanoparticles showed a 10-fold increase in vascular endothelial growth factor (VEGF) secretion compared to the control sample ( < 0.05, one-way ANOVA), as determined by enzyme-linked immunosorbent assay (ELISA) in treated cells. Based on present results, the co-doped system shows a strong potential impact on angiogenesis with no effect on cell cytotoxicity.
本研究提出了一种通过选择性离子掺杂来制备介孔生物活性玻璃纳米颗粒(MBGNs)的新方法。该方法可显著增强其物理化学性质和生物学性能。我们阐明了硼(B)和钴(Co)单独及联合掺杂对MBGNs结构、功能和生物相容性特征的影响。通过微乳液辅助溶胶 - 凝胶合成法,我们制备出尺寸在150至250纳米之间的MBGNs,扫描电子显微镜(SEM)和透射电子显微镜(TEM)观察发现,共掺杂时其形状从球形转变为更不规则的形状。我们分别通过X射线衍射(XRD)和傅里叶变换红外光谱(FTIR)评估了材料的非晶态性质和分子结构,注意到与生物活性相关的Si - O - Si基团得以保留。这会影响与天然组织中相似的矿相的成核和生长,在材料表面形成生物活性涂层。氮吸附 - 解吸等温线证实了共掺杂后介孔结构的比表面积增加。通过电感耦合等离子体质谱发射光谱法(ICP - OES)研究模拟体液中钙(Ca)和硅(Si)的释放行为,结果表明添加钴和硼后释放情况发生改变,其释放动力学也有所变化。骨再生依赖于成骨作用和血管网络形成以供应营养和氧气。本研究强调了硼和钴共掺杂的协同效应,与单离子掺杂相比,它能同时增强血管生成和成骨作用。对MG - 63和人皮肤成纤维细胞(HDFa)细胞系的生物相容性研究表明,硼可提高细胞活力,而钴的活力效应则取决于浓度。通过乳酸脱氢酶(LDH)测定评估细胞毒性,结果显示在参比样品和硼掺杂样品中高浓度时存在细胞毒性,而在共掺杂材料中细胞毒性显著降低。通过酶联免疫吸附测定法(ELISA)测定处理过的细胞,结果表明新开发的纳米颗粒与对照样品相比,血管内皮生长因子(VEGF)分泌增加了10倍(<0.05,单因素方差分析)。基于目前的结果,共掺杂体系对血管生成具有强大的潜在影响,且对细胞毒性无影响。