Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109.
Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, New York 14203.
J Biol Chem. 2019 Feb 1;294(5):1697-1705. doi: 10.1074/jbc.TM118.006295.
Prostaglandin endoperoxide H synthases-1 and -2, commonly called cyclooxygenases-1 and -2 (COX-1 and -2), catalyze the committed step in prostaglandin biosynthesis-the conversion of arachidonic acid to prostaglandin endoperoxide H Both COX isoforms are sequence homodimers that function as conformational heterodimers having allosteric (Eallo) and catalytic (Ecat) subunits. At least in the case of COX-2, the enzyme becomes folded into a stable Eallo/Ecat pair. Some COX inhibitors ( nonsteroidal anti-inflammatory drugs and coxibs) and common fatty acids (FAs) modulate Ecat activity by binding Eallo. However, the interactions and outcomes often differ between isoforms. For example, naproxen directly and completely inhibits COX-1 by binding Ecat but indirectly and incompletely inhibits COX-2 by binding Eallo. Additionally, COX-1 is allosterically inhibited up to 50% by common FAs like palmitic acid, whereas COX-2 is allosterically activated 2-fold by palmitic acid. FA binding to Eallo also affects responses to COX inhibitors. Thus, COXs are physiologically and pharmacologically regulated by the FA tone of the milieu in which each operates-COX-1 in the endoplasmic reticulum and COX-2 in the Golgi apparatus. Cross-talk between Eallo and Ecat involves a loop in Eallo immediately downstream of Arg-120. Mutational studies suggest that allosteric modulation requires a direct interaction between the carboxyl group of allosteric effectors and Arg-120 of Eallo; however, structural studies show some allosterically active FAs positioned in COX-2 in a conformation lacking an interaction with Arg-120. Thus, many details about the biological consequences of COX allosterism and how ligand binding to Eallo modulates Ecat remain to be resolved.
前列腺素内过氧化物 H 合酶-1 和 -2(通常称为环氧化酶-1 和 -2,COX-1 和 -2),催化前列腺素生物合成的关键步骤 - 将花生四烯酸转化为前列腺素内过氧化物 H。两种 COX 同工酶都是序列同源二聚体,作为构象异二聚体发挥作用,具有别构(Eallo)和催化(Ecat)亚基。至少在 COX-2 的情况下,该酶折叠成稳定的 Eallo/Ecat 对。一些 COX 抑制剂(非甾体抗炎药和 COXIBs)和常见脂肪酸(FAs)通过结合 Eallo 调节 Ecat 活性。然而,同工酶之间的相互作用和结果往往不同。例如,萘普生通过结合 Ecat 直接且完全抑制 COX-1,但通过结合 Eallo 间接且不完全抑制 COX-2。此外,常见脂肪酸如棕榈酸使 COX-1 的别构抑制高达 50%,而棕榈酸使 COX-2 的别构激活 2 倍。FA 与 Eallo 的结合也会影响对 COX 抑制剂的反应。因此,COX 受其所处环境中 FA 张力的生理和药理学调节 - COX-1 在内质网中,COX-2 在高尔基体中。Eallo 和 Ecat 之间的串扰涉及 Arg-120 下游的 Eallo 中的一个环。突变研究表明,别构调节需要别构效应物的羧基基团与 Eallo 的 Arg-120 之间的直接相互作用;然而,结构研究表明,一些别构活性 FA 在 COX-2 中定位于缺乏与 Arg-120 相互作用的构象中。因此,关于 COX 别构作用的生物学后果以及配体与 Eallo 结合如何调节 Ecat 的许多细节仍有待解决。