Suppr超能文献

基于分子模拟的虚拟筛选。

Virtual screening using molecular simulations.

机构信息

Department of Biomedical Engineering, The University of Texas, Austin, Texas 78712, USA.

出版信息

Proteins. 2011 Jun;79(6):1940-51. doi: 10.1002/prot.23018. Epub 2011 Apr 12.

Abstract

Effective virtual screening relies on our ability to make accurate prediction of protein-ligand binding, which remains a great challenge. In this work, utilizing the molecular-mechanics Poisson-Boltzmann (or Generalized Born) surface area approach, we have evaluated the binding affinity of a set of 156 ligands to seven families of proteins, trypsin β, thrombin α, cyclin-dependent kinase (CDK), cAMP-dependent kinase (PKA), urokinase-type plasminogen activator, β-glucosidase A, and coagulation factor Xa. The effect of protein dielectric constant in the implicit-solvent model on the binding free energy calculation is shown to be important. The statistical correlations between the binding energy calculated from the implicit-solvent approach and experimental free energy are in the range of 0.56-0.79 across all the families. This performance is better than that of typical docking programs especially given that the latter is directly trained using known binding data whereas the molecular mechanics is based on general physical parameters. Estimation of entropic contribution remains the barrier to accurate free energy calculation. We show that the traditional rigid rotor harmonic oscillator approximation is unable to improve the binding free energy prediction. Inclusion of conformational restriction seems to be promising but requires further investigation. On the other hand, our preliminary study suggests that implicit-solvent based alchemical perturbation, which offers explicit sampling of configuration entropy, can be a viable approach to significantly improve the prediction of binding free energy. Overall, the molecular mechanics approach has the potential for medium to high-throughput computational drug discovery.

摘要

有效的虚拟筛选依赖于我们对蛋白质-配体结合进行准确预测的能力,这仍然是一个巨大的挑战。在这项工作中,我们利用分子力学泊松-玻尔兹曼(或广义 Born)表面积方法,评估了 156 种配体与 7 种蛋白质家族(胰蛋白酶β、凝血酶α、细胞周期蛋白依赖性激酶(CDK)、cAMP 依赖性激酶(PKA)、尿激酶型纤溶酶原激活物、β-葡萄糖苷酶 A 和凝血因子 Xa)的结合亲和力。在隐式溶剂模型中,蛋白质介电常数对结合自由能计算的影响被证明是重要的。从隐式溶剂方法计算的结合能与实验自由能之间的统计相关性在所有家族中都在 0.56-0.79 之间。这种性能优于典型的对接程序,特别是因为后者是直接使用已知的结合数据进行训练的,而分子力学则基于一般物理参数。对熵贡献的估计仍然是准确计算自由能的障碍。我们表明,传统的刚性转子谐振子近似法无法提高结合自由能预测的准确性。包含构象限制似乎很有前途,但需要进一步研究。另一方面,我们的初步研究表明,基于隐式溶剂的化学计量扰动可以提供配置熵的显式采样,这可能是一种可行的方法,可以显著提高结合自由能预测的准确性。总的来说,分子力学方法具有进行中等到高通量计算药物发现的潜力。

相似文献

1
Virtual screening using molecular simulations.基于分子模拟的虚拟筛选。
Proteins. 2011 Jun;79(6):1940-51. doi: 10.1002/prot.23018. Epub 2011 Apr 12.
8
Interaction Entropy for Computational Alanine Scanning.计算丙氨酸扫描的相互作用熵
J Chem Inf Model. 2017 May 22;57(5):1112-1122. doi: 10.1021/acs.jcim.6b00734. Epub 2017 Apr 27.

引用本文的文献

本文引用的文献

8
Current status of the AMOEBA polarizable force field.AMOEBA 极化力场的现状。
J Phys Chem B. 2010 Mar 4;114(8):2549-64. doi: 10.1021/jp910674d.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验