Suppr超能文献

基于分子模拟的虚拟筛选。

Virtual screening using molecular simulations.

机构信息

Department of Biomedical Engineering, The University of Texas, Austin, Texas 78712, USA.

出版信息

Proteins. 2011 Jun;79(6):1940-51. doi: 10.1002/prot.23018. Epub 2011 Apr 12.

Abstract

Effective virtual screening relies on our ability to make accurate prediction of protein-ligand binding, which remains a great challenge. In this work, utilizing the molecular-mechanics Poisson-Boltzmann (or Generalized Born) surface area approach, we have evaluated the binding affinity of a set of 156 ligands to seven families of proteins, trypsin β, thrombin α, cyclin-dependent kinase (CDK), cAMP-dependent kinase (PKA), urokinase-type plasminogen activator, β-glucosidase A, and coagulation factor Xa. The effect of protein dielectric constant in the implicit-solvent model on the binding free energy calculation is shown to be important. The statistical correlations between the binding energy calculated from the implicit-solvent approach and experimental free energy are in the range of 0.56-0.79 across all the families. This performance is better than that of typical docking programs especially given that the latter is directly trained using known binding data whereas the molecular mechanics is based on general physical parameters. Estimation of entropic contribution remains the barrier to accurate free energy calculation. We show that the traditional rigid rotor harmonic oscillator approximation is unable to improve the binding free energy prediction. Inclusion of conformational restriction seems to be promising but requires further investigation. On the other hand, our preliminary study suggests that implicit-solvent based alchemical perturbation, which offers explicit sampling of configuration entropy, can be a viable approach to significantly improve the prediction of binding free energy. Overall, the molecular mechanics approach has the potential for medium to high-throughput computational drug discovery.

摘要

有效的虚拟筛选依赖于我们对蛋白质-配体结合进行准确预测的能力,这仍然是一个巨大的挑战。在这项工作中,我们利用分子力学泊松-玻尔兹曼(或广义 Born)表面积方法,评估了 156 种配体与 7 种蛋白质家族(胰蛋白酶β、凝血酶α、细胞周期蛋白依赖性激酶(CDK)、cAMP 依赖性激酶(PKA)、尿激酶型纤溶酶原激活物、β-葡萄糖苷酶 A 和凝血因子 Xa)的结合亲和力。在隐式溶剂模型中,蛋白质介电常数对结合自由能计算的影响被证明是重要的。从隐式溶剂方法计算的结合能与实验自由能之间的统计相关性在所有家族中都在 0.56-0.79 之间。这种性能优于典型的对接程序,特别是因为后者是直接使用已知的结合数据进行训练的,而分子力学则基于一般物理参数。对熵贡献的估计仍然是准确计算自由能的障碍。我们表明,传统的刚性转子谐振子近似法无法提高结合自由能预测的准确性。包含构象限制似乎很有前途,但需要进一步研究。另一方面,我们的初步研究表明,基于隐式溶剂的化学计量扰动可以提供配置熵的显式采样,这可能是一种可行的方法,可以显著提高结合自由能预测的准确性。总的来说,分子力学方法具有进行中等到高通量计算药物发现的潜力。

相似文献

1
Virtual screening using molecular simulations.
Proteins. 2011 Jun;79(6):1940-51. doi: 10.1002/prot.23018. Epub 2011 Apr 12.
2
Develop and test a solvent accessible surface area-based model in conformational entropy calculations.
J Chem Inf Model. 2012 May 25;52(5):1199-212. doi: 10.1021/ci300064d. Epub 2012 Apr 24.
5
How Well Does the Extended Linear Interaction Energy Method Perform in Accurate Binding Free Energy Calculations?
J Chem Inf Model. 2020 Dec 28;60(12):6624-6633. doi: 10.1021/acs.jcim.0c00934. Epub 2020 Nov 19.
7
SAMPL7 TrimerTrip host-guest binding affinities from extensive alchemical and end-point free energy calculations.
J Comput Aided Mol Des. 2021 Jan;35(1):117-129. doi: 10.1007/s10822-020-00351-9. Epub 2020 Oct 10.
8
Interaction Entropy for Computational Alanine Scanning.
J Chem Inf Model. 2017 May 22;57(5):1112-1122. doi: 10.1021/acs.jcim.6b00734. Epub 2017 Apr 27.

引用本文的文献

5
10
Dual-Reporter System for Real-Time Monitoring of SARS-CoV-2 Main Protease Activity in Live Cells Enables Identification of an Allosteric Inhibition Path.
ACS Bio Med Chem Au. 2022 Dec 21;2(6):627-641. doi: 10.1021/acsbiomedchemau.2c00034. Epub 2022 Oct 17.

本文引用的文献

1
Polarizable Atomic Multipole Solutes in a Generalized Kirkwood Continuum.
J Chem Theory Comput. 2007 Nov;3(6):2083-97. doi: 10.1021/ct7001336.
4
Drug discovery: Pulled from a protein's embrace.
Nature. 2010 Jul 1;466(7302):42-3. doi: 10.1038/466042a.
5
Single-molecule pulling simulations can discern active from inactive enzyme inhibitors.
J Am Chem Soc. 2010 Jun 2;132(21):7361-71. doi: 10.1021/ja100259r.
6
7
How to improve R&D productivity: the pharmaceutical industry's grand challenge.
Nat Rev Drug Discov. 2010 Mar;9(3):203-14. doi: 10.1038/nrd3078. Epub 2010 Feb 19.
8
Current status of the AMOEBA polarizable force field.
J Phys Chem B. 2010 Mar 4;114(8):2549-64. doi: 10.1021/jp910674d.
9
How to obtain statistically converged MM/GBSA results.
J Comput Chem. 2010 Mar;31(4):837-46. doi: 10.1002/jcc.21366.
10
Theory of free energy and entropy in noncovalent binding.
Chem Rev. 2009 Sep;109(9):4092-107. doi: 10.1021/cr800551w.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验