Suppr超能文献

计算蛋白质-配体结合亲和力时考虑配体构象限制。

Accounting for ligand conformational restriction in calculations of protein-ligand binding affinities.

机构信息

Department of Chemistry, University of Rochester, New York, USA.

出版信息

Biophys J. 2010 Mar 3;98(5):901-10. doi: 10.1016/j.bpj.2009.11.018.

Abstract

The conformation adopted by a ligand on binding to a receptor may differ from its lowest-energy conformation in solution. In addition, the bound ligand is more conformationally restricted, which is associated with a configurational entropy loss. The free energy change due to these effects is often neglected or treated crudely in current models for predicting binding affinity. We present a method for estimating this contribution, based on perturbation theory using the quasi-harmonic model of Karplus and Kushick as a reference system. The consistency of the method is checked for small model systems. Subsequently we use the method, along with an estimate for the enthalpic contribution due to ligand-receptor interactions, to calculate relative binding affinities. The AMBER force field and generalized Born implicit solvent model is used. Binding affinities were estimated for a test set of 233 protein-ligand complexes for which crystal structures and measured binding affinities are available. In most cases, the ligand conformation in the bound state was significantly different from the most favorable conformation in solution. In general, the correlation between measured and calculated ligand binding affinities including the free energy change due to ligand conformational change is comparable to or slightly better than that obtained by using an empirically-trained docking score. Both entropic and enthalpic contributions to this free energy change are significant.

摘要

配体与受体结合时所采取的构象可能与其在溶液中的最低能量构象不同。此外,结合的配体受到更多的构象限制,这与构象熵损失有关。在当前用于预测结合亲和力的模型中,这些效应引起的自由能变化通常被忽略或粗略处理。我们提出了一种估计这种贡献的方法,该方法基于使用 Karplus 和 Kushick 的准谐模型作为参考系统的微扰理论。我们检查了该方法在小模型系统中的一致性。随后,我们使用该方法以及配体-受体相互作用引起的焓贡献的估计值来计算相对结合亲和力。我们使用 AMBER 力场和广义 Born 隐溶剂模型。对于具有晶体结构和测量结合亲和力的 233 个蛋白质-配体复合物的测试集,我们估计了结合亲和力。在大多数情况下,结合状态下的配体构象与溶液中最有利的构象明显不同。通常,包括配体构象变化引起的自由能变化在内的测量和计算的配体结合亲和力之间的相关性与使用经验训练的对接评分获得的相关性相当或略好。熵和焓对这种自由能变化都有重要贡献。

相似文献

1
2
Binding-affinity predictions of HSP90 in the D3R Grand Challenge 2015 with docking, MM/GBSA, QM/MM, and free-energy simulations.
J Comput Aided Mol Des. 2016 Sep;30(9):707-730. doi: 10.1007/s10822-016-9942-z. Epub 2016 Aug 26.
3
Conformational energy penalties of protein-bound ligands.
J Comput Aided Mol Des. 1998 Jul;12(4):383-96. doi: 10.1023/a:1008007507641.
4
Effect of conformational flexibility and solvation on receptor-ligand binding free energies.
Biochemistry. 1994 Nov 29;33(47):13977-88. doi: 10.1021/bi00251a004.
5
Accuracy comparison of several common implicit solvent models and their implementations in the context of protein-ligand binding.
J Mol Graph Model. 2017 Mar;72:70-80. doi: 10.1016/j.jmgm.2016.12.011. Epub 2016 Dec 21.
8
Prediction of trypsin/molecular fragment binding affinities by free energy decomposition and empirical scores.
J Comput Aided Mol Des. 2012 May;26(5):647-59. doi: 10.1007/s10822-012-9567-9. Epub 2012 Apr 4.
9
MM/GBSA binding energy prediction on the PDBbind data set: successes, failures, and directions for further improvement.
J Chem Inf Model. 2013 Jan 28;53(1):201-9. doi: 10.1021/ci300425v. Epub 2012 Dec 27.
10
Empirical calculation of the relative free energies of peptide binding to the molecular chaperone DnaK.
Proteins. 2000 Aug 1;40(2):185-92. doi: 10.1002/(sici)1097-0134(20000801)40:2<185::aid-prot20>3.0.co;2-x.

引用本文的文献

2
Low-Frequency Vibrational Spectroscopy and Quantum Mechanical Simulations of the Crystalline Polymorphs of the Antiviral Drug Ribavirin.
Mol Pharm. 2022 Sep 5;19(9):3385-3393. doi: 10.1021/acs.molpharmaceut.2c00509. Epub 2022 Aug 11.
3
Calculation of Crystal-Solution Dissociation Constants.
Biomolecules. 2022 Jan 18;12(2):147. doi: 10.3390/biom12020147.
4
Investigation of Thiocarbamates as Potential Inhibitors of the SARS-CoV-2 Mpro.
Pharmaceuticals (Basel). 2021 Nov 12;14(11):1153. doi: 10.3390/ph14111153.
5
Combined Linear Interaction Energy and Alchemical Solvation Free-Energy Approach for Protein-Binding Affinity Computation.
J Chem Theory Comput. 2020 Feb 11;16(2):1300-1310. doi: 10.1021/acs.jctc.9b00890. Epub 2020 Jan 21.
7
Calculating protein-ligand binding affinities with MMPBSA: Method and error analysis.
J Comput Chem. 2016 Oct 15;37(27):2436-46. doi: 10.1002/jcc.24467. Epub 2016 Aug 11.
8
The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities.
Expert Opin Drug Discov. 2015 May;10(5):449-61. doi: 10.1517/17460441.2015.1032936. Epub 2015 Apr 2.

本文引用的文献

1
Evaluating the Accuracy of the Quasiharmonic Approximation.
J Chem Theory Comput. 2005 Sep;1(5):1017-28. doi: 10.1021/ct0500904.
2
Calculation of Standard Binding Free Energies:  Aromatic Molecules in the T4 Lysozyme L99A Mutant.
J Chem Theory Comput. 2006 Sep;2(5):1255-73. doi: 10.1021/ct060037v.
3
4
Binding of small-molecule ligands to proteins: "what you see" is not always "what you get".
Structure. 2009 Apr 15;17(4):489-98. doi: 10.1016/j.str.2009.02.010.
5
Computations of standard binding free energies with molecular dynamics simulations.
J Phys Chem B. 2009 Feb 26;113(8):2234-46. doi: 10.1021/jp807701h.
6
Hit identification and binding mode predictions by rigorous free energy simulations.
J Med Chem. 2008 Nov 13;51(21):6654-64. doi: 10.1021/jm800524s. Epub 2008 Oct 4.
7
Binding specificity of SH2 domains: insight from free energy simulations.
Proteins. 2009 Mar;74(4):996-1007. doi: 10.1002/prot.22209.
8
Assessment of programs for ligand binding affinity prediction.
J Comput Chem. 2008 Jun;29(8):1316-31. doi: 10.1002/jcc.20893.
9
Treating entropy and conformational changes in implicit solvent simulations of small molecules.
J Phys Chem B. 2008 Jan 24;112(3):938-46. doi: 10.1021/jp0764384. Epub 2008 Jan 3.
10
Absolute free-energy calculations of liquids using a harmonic reference state.
J Phys Chem B. 2007 Aug 16;111(32):9571-80. doi: 10.1021/jp072357w. Epub 2007 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验