Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
J Comput Aided Mol Des. 2019 Jan;33(1):105-117. doi: 10.1007/s10822-018-0162-6. Epub 2018 Sep 14.
We participated in the Cathepsin S (CatS) sub-challenge of the Drug Design Data Resource (D3R) Grand Challenge 3 (GC3) in 2017 to blindly predict the binding poses of 24 CatS-bound ligands, the binding affinity ranking of 136 ligands, and the binding free energies of a subset of 33 ligands in Stage 1A and Stage 2. Our submitted predictions ranked relatively well compared to the submissions from other participants. Here we present our methodologies used in the challenge. For the binding pose prediction, we employed the Glide module in the Schrodinger Suite 2017 and AutoDock Vina. For the binding affinity/free energy prediction, we carried out molecular dynamics simulations of the complexes in explicit water solvent with counter ions, and then estimated the binding free energies with our newly developed model of extended linear interaction energy (ELIE), which is inspired by two other popular end-point approaches: the linear interaction energy (LIE) method, and the molecular mechanics with Poisson-Boltzmann surface area solvation method (MM/PBSA). Our studies suggest that ELIE is a good trade-off between efficiency and accuracy, and it is appropriate for filling the gap between the high-throughput docking and scoring methods and the rigorous but much more computationally demanding methods like free energy perturbation (FEP) or thermodynamics integration (TI) in computer-aided drug design (CADD) projects.
我们参加了 2017 年药物设计数据资源 (D3R) 第三次大挑战 (GC3) 的组织蛋白酶 S (CatS) 子挑战,旨在对 24 个 CatS 结合配体的结合构象、136 个配体的结合亲和力排序和 33 个配体的子集的结合自由能进行盲目的预测。在阶段 1A 和阶段 2 中,我们的提交预测与其他参与者的提交相比排名相对较好。在此,我们展示了在挑战中使用的方法。对于结合构象预测,我们使用了 Schrodinger Suite 2017 中的 Glide 模块和 AutoDock Vina。对于结合亲和力/自由能预测,我们对复合物在含有抗衡离子的明水环境中的进行分子动力学模拟,然后使用我们新开发的扩展线性相互作用能 (ELIE) 模型来估算结合自由能,该模型受到两种其他流行的终点方法的启发:线性相互作用能 (LIE) 方法和分子力学与泊松-玻尔兹曼表面面积溶剂化方法 (MM/PBSA)。我们的研究表明,ELIE 在效率和准确性之间是一个很好的权衡,它适合填补高通量对接和评分方法与计算机辅助药物设计 (CADD) 项目中更严格但计算要求更高的方法(如自由能微扰 (FEP) 或热力学积分 (TI))之间的差距。