Suppr超能文献

用扩展线性相互作用能方法计算蛋白质-配体结合亲和力:在 D3R 大挑战 3 中的组织蛋白酶 S 集上的应用。

Calculate protein-ligand binding affinities with the extended linear interaction energy method: application on the Cathepsin S set in the D3R Grand Challenge 3.

机构信息

Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA.

出版信息

J Comput Aided Mol Des. 2019 Jan;33(1):105-117. doi: 10.1007/s10822-018-0162-6. Epub 2018 Sep 14.

Abstract

We participated in the Cathepsin S (CatS) sub-challenge of the Drug Design Data Resource (D3R) Grand Challenge 3 (GC3) in 2017 to blindly predict the binding poses of 24 CatS-bound ligands, the binding affinity ranking of 136 ligands, and the binding free energies of a subset of 33 ligands in Stage 1A and Stage 2. Our submitted predictions ranked relatively well compared to the submissions from other participants. Here we present our methodologies used in the challenge. For the binding pose prediction, we employed the Glide module in the Schrodinger Suite 2017 and AutoDock Vina. For the binding affinity/free energy prediction, we carried out molecular dynamics simulations of the complexes in explicit water solvent with counter ions, and then estimated the binding free energies with our newly developed model of extended linear interaction energy (ELIE), which is inspired by two other popular end-point approaches: the linear interaction energy (LIE) method, and the molecular mechanics with Poisson-Boltzmann surface area solvation method (MM/PBSA). Our studies suggest that ELIE is a good trade-off between efficiency and accuracy, and it is appropriate for filling the gap between the high-throughput docking and scoring methods and the rigorous but much more computationally demanding methods like free energy perturbation (FEP) or thermodynamics integration (TI) in computer-aided drug design (CADD) projects.

摘要

我们参加了 2017 年药物设计数据资源 (D3R) 第三次大挑战 (GC3) 的组织蛋白酶 S (CatS) 子挑战,旨在对 24 个 CatS 结合配体的结合构象、136 个配体的结合亲和力排序和 33 个配体的子集的结合自由能进行盲目的预测。在阶段 1A 和阶段 2 中,我们的提交预测与其他参与者的提交相比排名相对较好。在此,我们展示了在挑战中使用的方法。对于结合构象预测,我们使用了 Schrodinger Suite 2017 中的 Glide 模块和 AutoDock Vina。对于结合亲和力/自由能预测,我们对复合物在含有抗衡离子的明水环境中的进行分子动力学模拟,然后使用我们新开发的扩展线性相互作用能 (ELIE) 模型来估算结合自由能,该模型受到两种其他流行的终点方法的启发:线性相互作用能 (LIE) 方法和分子力学与泊松-玻尔兹曼表面面积溶剂化方法 (MM/PBSA)。我们的研究表明,ELIE 在效率和准确性之间是一个很好的权衡,它适合填补高通量对接和评分方法与计算机辅助药物设计 (CADD) 项目中更严格但计算要求更高的方法(如自由能微扰 (FEP) 或热力学积分 (TI))之间的差距。

相似文献

引用本文的文献

10
Recent Developments in Free Energy Calculations for Drug Discovery.药物发现中自由能计算的最新进展。
Front Mol Biosci. 2021 Aug 11;8:712085. doi: 10.3389/fmolb.2021.712085. eCollection 2021.

本文引用的文献

2
The Future of Cysteine Cathepsins in Disease Management.半胱氨酸组织蛋白酶在疾病管理中的未来。
Trends Pharmacol Sci. 2017 Oct;38(10):873-898. doi: 10.1016/j.tips.2017.06.003. Epub 2017 Jun 28.
3
Predicting Binding Free Energies: Frontiers and Benchmarks.预测结合自由能:前沿和基准。
Annu Rev Biophys. 2017 May 22;46:531-558. doi: 10.1146/annurev-biophys-070816-033654. Epub 2017 Apr 7.
10
The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities.用于估计配体结合亲和力的MM/PBSA和MM/GBSA方法。
Expert Opin Drug Discov. 2015 May;10(5):449-61. doi: 10.1517/17460441.2015.1032936. Epub 2015 Apr 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验