Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
J Am Chem Soc. 2011 May 11;133(18):7054-64. doi: 10.1021/ja110926s. Epub 2011 Apr 14.
Layer-by-layer assembly of polyelectrolyte multilayer (PEM) films represents a bottom-up approach for re-engineering the molecular landscape of cell surfaces with spatially continuous and molecularly uniform ultrathin films. However, fabricating PEMs on viable cells has proven challenging owing to the high cytotoxicity of polycations. Here, we report the rational engineering of a new class of PEMs with modular biological functionality and tunable physicochemical properties which have been engineered to abrogate cytotoxicity. Specifically, we have discovered a subset of cationic copolymers that undergoes a conformational change, which mitigates membrane disruption and facilitates the deposition of PEMs on cell surfaces that are tailorable in composition, reactivity, thickness, and mechanical properties. Furthermore, we demonstrate the first successful in vivo application of PEM-engineered cells, which maintained viability and function upon transplantation and were used as carriers for in vivo delivery of PEMs containing biomolecular payloads. This new class of polymeric film and the design strategies developed herein establish an enabling technology for cell transplantation and other therapies based on engineered cells.
层层组装聚电解质多层(PEM)膜代表了一种自下而上的方法,用于通过具有空间连续和分子均匀的超薄膜来重新构建细胞表面的分子景观。然而,由于多阳离子的高细胞毒性,在活细胞上制造 PEM 被证明具有挑战性。在这里,我们报告了一类具有模块化生物功能和可调物理化学性质的新型 PEM 的合理工程设计,这些 PEM 经过工程设计以消除细胞毒性。具体来说,我们发现了一组阳离子共聚物,它们发生构象变化,从而减轻了膜的破坏,并促进了 PEM 在细胞表面的沉积,这些 PEM 在组成、反应性、厚度和机械性能方面都是可定制的。此外,我们展示了 PEM 工程化细胞的第一个成功的体内应用,这些细胞在移植后保持存活和功能,并被用作含有生物分子有效载荷的 PEM 的体内递送载体。这种新型聚合物膜和本文开发的设计策略为基于工程细胞的细胞移植和其他疗法建立了一种使能技术。