Suppr超能文献

一氧化氮对核苷酸调节可溶性鸟苷酸环化酶的影响:假对称位点的作用

The Influence of Nitric Oxide on Soluble Guanylate Cyclase Regulation by Nucleotides: ROLE OF THE PSEUDOSYMMETRIC SITE.

作者信息

Sürmeli Nur Başak, Müskens Frederike M, Marletta Michael A

机构信息

Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037.

Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CG Utrecht, The Netherlands.

出版信息

J Biol Chem. 2015 Jun 19;290(25):15570-15580. doi: 10.1074/jbc.M115.641431. Epub 2015 Apr 23.

Abstract

Activation of soluble guanylate cyclase (sGC) by the signaling molecule nitric oxide (NO) leads to formation of the second messenger cGMP, which mediates numerous physiological processes. NO activates sGC by binding to the ferrous heme cofactor; the relative amount of NO with respect to sGC heme affects the enzyme activity. ATP can also influence the activity by binding to an allosteric site, most likely the pseudosymmetric site located in the catalytic domain. Here, the role of the pseudosymmetric site on nucleotide regulation was investigated by point mutations at this site. ATP inhibition kinetics of wild type and a pseudosymmetric site (α1-C594A/β1-D477A) variant of sGC was determined at various levels of NO. Results obtained show that in the presence of less than 1 eq of NO, there appears to be less than complete activation and little change in the nucleotide binding parameters. The most dramatic effects are observed for the addition of excess NO, which results in an increase in the affinity of GTP at the catalytic site and full activation of sGC. The pseudosymmetric site mutation only affected nucleotide affinities in the presence of excess NO; there was a decrease in the affinity for ATP in both the allosteric and catalytic sites. These observations led to a new kinetic model for sGC activity in the presence of excess NO. This model revealed that the active and allosteric sites show cooperativity. This new comprehensive model gives a more accurate description of sGC regulation by NO and nucleotides in vivo.

摘要

信号分子一氧化氮(NO)激活可溶性鸟苷酸环化酶(sGC)会导致第二信使环磷酸鸟苷(cGMP)的形成,cGMP介导众多生理过程。NO通过与亚铁血红素辅因子结合来激活sGC;相对于sGC血红素而言,NO的相对量会影响酶的活性。ATP也能通过与变构位点结合来影响活性,该变构位点很可能位于催化结构域中的假对称位点。在此,通过对该位点进行点突变来研究假对称位点在核苷酸调节中的作用。在不同的NO水平下测定了野生型sGC和假对称位点(α1-C594A/β1-D477A)变体的ATP抑制动力学。所得结果表明,在NO少于1当量的情况下,似乎存在不完全激活,且核苷酸结合参数变化不大。添加过量NO时观察到最显著的影响,这导致催化位点处GTP亲和力增加以及sGC完全激活。假对称位点突变仅在存在过量NO的情况下影响核苷酸亲和力;变构位点和催化位点对ATP的亲和力均降低。这些观察结果得出了一个在存在过量NO时sGC活性的新动力学模型。该模型表明活性位点和变构位点表现出协同性。这个新的综合模型更准确地描述了体内NO和核苷酸对sGC的调节作用。

相似文献

1
The Influence of Nitric Oxide on Soluble Guanylate Cyclase Regulation by Nucleotides: ROLE OF THE PSEUDOSYMMETRIC SITE.
J Biol Chem. 2015 Jun 19;290(25):15570-15580. doi: 10.1074/jbc.M115.641431. Epub 2015 Apr 23.
2
Probing domain interactions in soluble guanylate cyclase.
Biochemistry. 2011 May 24;50(20):4281-90. doi: 10.1021/bi200341b. Epub 2011 May 3.
4
Dissociation of nitric oxide from soluble guanylate cyclase and heme-nitric oxide/oxygen binding domain constructs.
J Biol Chem. 2007 Jan 12;282(2):897-907. doi: 10.1074/jbc.M606327200. Epub 2006 Nov 10.
6
Nucleotide regulation of soluble guanylate cyclase substrate specificity.
Biochemistry. 2009 Aug 11;48(31):7519-24. doi: 10.1021/bi900696x.
7
A novel insight into the heme and NO/CO binding mechanism of the alpha subunit of human soluble guanylate cyclase.
J Biol Inorg Chem. 2011 Dec;16(8):1227-39. doi: 10.1007/s00775-011-0811-x. Epub 2011 Jul 2.
9
Heme-assisted S-nitrosation desensitizes ferric soluble guanylate cyclase to nitric oxide.
J Biol Chem. 2012 Dec 14;287(51):43053-62. doi: 10.1074/jbc.M112.393892. Epub 2012 Oct 23.
10
Higher-order interactions bridge the nitric oxide receptor and catalytic domains of soluble guanylate cyclase.
Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):6777-82. doi: 10.1073/pnas.1301934110. Epub 2013 Apr 9.

引用本文的文献

3
Nitric Oxide Deficiency in Mitochondrial Disorders: The Utility of Arginine and Citrulline.
Front Mol Neurosci. 2021 Aug 5;14:682780. doi: 10.3389/fnmol.2021.682780. eCollection 2021.
4
Structural Perspectives on the Mechanism of Soluble Guanylate Cyclase Activation.
Int J Mol Sci. 2021 May 21;22(11):5439. doi: 10.3390/ijms22115439.
5
The Roles of NO and HS in Sperm Biology: Recent Advances and New Perspectives.
Int J Mol Sci. 2020 Mar 21;21(6):2174. doi: 10.3390/ijms21062174.
7
Physiological activation and deactivation of soluble guanylate cyclase.
Nitric Oxide. 2018 Jul 1;77:65-74. doi: 10.1016/j.niox.2018.04.011. Epub 2018 Apr 25.
8
Structure/function of the soluble guanylyl cyclase catalytic domain.
Nitric Oxide. 2018 Jul 1;77:53-64. doi: 10.1016/j.niox.2018.04.008. Epub 2018 Apr 25.
9
Structure and Activation of Soluble Guanylyl Cyclase, the Nitric Oxide Sensor.
Antioxid Redox Signal. 2017 Jan 20;26(3):107-121. doi: 10.1089/ars.2016.6693. Epub 2016 Apr 26.
10
Thiol-Based Redox Modulation of Soluble Guanylyl Cyclase, the Nitric Oxide Receptor.
Antioxid Redox Signal. 2017 Jan 20;26(3):137-149. doi: 10.1089/ars.2015.6591. Epub 2016 Apr 1.

本文引用的文献

1
Structural insights into the role of iron-histidine bond cleavage in nitric oxide-induced activation of H-NOX gas sensor proteins.
Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):E4156-64. doi: 10.1073/pnas.1416936111. Epub 2014 Sep 24.
2
Regulation of intraocular pressure by soluble and membrane guanylate cyclases and their role in glaucoma.
Front Mol Neurosci. 2014 May 19;7:38. doi: 10.3389/fnmol.2014.00038. eCollection 2014.
4
Nitric oxide-induced conformational changes in soluble guanylate cyclase.
Structure. 2014 Apr 8;22(4):602-11. doi: 10.1016/j.str.2014.01.008. Epub 2014 Feb 20.
5
The cGMP signaling pathway as a therapeutic target in heart failure with preserved ejection fraction.
J Am Heart Assoc. 2013 Dec 11;2(6):e000536. doi: 10.1161/JAHA.113.000536.
6
The chemistry and biology of soluble guanylate cyclase stimulators and activators.
Angew Chem Int Ed Engl. 2013 Sep 2;52(36):9442-62. doi: 10.1002/anie.201302588. Epub 2013 Aug 20.
7
Riociguat for the treatment of pulmonary arterial hypertension.
N Engl J Med. 2013 Jul 25;369(4):330-40. doi: 10.1056/NEJMoa1209655.
8
Higher-order interactions bridge the nitric oxide receptor and catalytic domains of soluble guanylate cyclase.
Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):6777-82. doi: 10.1073/pnas.1301934110. Epub 2013 Apr 9.
9
Crystal structures of the catalytic domain of human soluble guanylate cyclase.
PLoS One. 2013;8(3):e57644. doi: 10.1371/journal.pone.0057644. Epub 2013 Mar 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验