Suppr超能文献

肺部结节:通过软件抑制肋骨和锁骨在胸部 X 光片上的显示,可提高检测率。

Lung nodules: improved detection with software that suppresses the rib and clavicle on chest radiographs.

机构信息

Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, 3800 Reservoir Rd NW, Room S150, Washington, DC 20057-1465, USA. Freedmmt@georgetown .edu

出版信息

Radiology. 2011 Jul;260(1):265-73. doi: 10.1148/radiol.11100153. Epub 2011 Apr 14.

Abstract

PURPOSE

To demonstrate possible superiority in the performance of a radiologist who is tasked with detecting actionable nodules and aided by the bone suppression and soft-tissue visualization algorithm of a new software program that produces a modified image by suppressing the ribs and clavicles, filtering noise, and equalizing the contrast in the area of the lungs.

MATERIALS AND METHODS

The study and use of anonymized and deidentified data received approval from the MedStar-Georgetown University Oncology Institutional Review Board. Informed consent was obtained from 15 study radiologists. The study radiologists participated as observers in a reader study of 368 patients in an approximately 2:1 cancer-free-to-cancer ratio. The localized receiver operating characteristic (LROC) method was used for analyses. Images were rerandomized for each radiologist. Each patient image was sequentially read, first with the standard radiograph and then with the software-aided image. Normal studies were confirmed with computed tomography (CT), follow-up, and/or panel consensus.

RESULTS

Each reader and the combined scores of the 15 readers showed improvement. The area under the combined LROC curve increased significantly from 0.460 unaided to 0.558 aided by visualization software (P = .0001). When measured according to the reader's indication that a case should be sent or not sent for CT or biopsy, sensitivity for cancer detection increased from 49.5% unaided to 66.3% aided by software (P < .0001); specificity decreased from 96.1% to 91.8% (P = .004). Seventy-four percent of the aided detections occurred in cancers with 70% or greater overlap of the bone and the nodule.

CONCLUSION

The radiologists using visualization software significantly increased their detection of lung cancers and benign nodules.

摘要

目的

展示一位放射科医生在检测可行动性结节方面的表现可能具有优势,该医生使用一种新软件的骨骼抑制和软组织可视化算法,通过抑制肋骨和锁骨、过滤噪声以及均衡肺部区域的对比度来生成修改后的图像。

材料和方法

这项研究和使用匿名和去识别数据获得了 MedStar-Georgetown 大学肿瘤学机构审查委员会的批准。从 15 名研究放射科医生处获得了知情同意。这些研究放射科医生作为观察者参加了一项涉及 368 名患者的研究,其中癌症患者与非癌症患者的比例约为 2:1。使用局部接收器操作特征 (LROC) 方法进行分析。为每位放射科医生重新随机分配图像。每个患者的图像首先与标准射线照片一起,然后与软件辅助图像一起进行顺序读取。正常研究通过计算机断层扫描 (CT)、随访和/或专家组共识进行确认。

结果

每位读者以及 15 位读者的综合评分都有所提高。组合 LROC 曲线下的面积从未辅助时的 0.460 显著增加到辅助时的 0.558(软件可视化)(P =.0001)。根据读者的指示,将病例发送或不发送进行 CT 或活检进行测量时,癌症检测的敏感性从未辅助时的 49.5%增加到软件辅助时的 66.3%(P <.0001);特异性从 96.1%下降到 91.8%(P =.004)。74%的辅助检测发生在骨与结节重叠度为 70%或更高的癌症中。

结论

使用可视化软件的放射科医生显著提高了他们对肺癌和良性结节的检测能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验