Department of Radiology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Korea.
Department of Radiology, Gyeongsang National University Changwon Hospital, Changwon, Korea.
Korean J Radiol. 2022 Jan;23(1):139-149. doi: 10.3348/kjr.2021.0146.
To compare the effects of bone suppression imaging using deep learning (BSp-DL) based on a generative adversarial network (GAN) and bone subtraction imaging using a dual energy technique (BSt-DE) on radiologists' performance for pulmonary nodule detection on chest radiographs (CXRs).
A total of 111 adults, including 49 patients with 83 pulmonary nodules, who underwent both CXR using the dual energy technique and chest CT, were enrolled. Using CT as a reference, two independent radiologists evaluated CXR images for the presence or absence of pulmonary nodules in three reading sessions (standard CXR, BSt-DE CXR, and BSp-DL CXR). Person-wise and nodule-wise performances were assessed using receiver-operating characteristic (ROC) and alternative free-response ROC (AFROC) curve analyses, respectively. Subgroup analyses based on nodule size, location, and the presence of overlapping bones were performed.
BSt-DE with an area under the AFROC curve (AUAFROC) of 0.996 and 0.976 for readers 1 and 2, respectively, and BSp-DL with AUAFROC of 0.981 and 0.958, respectively, showed better nodule-wise performance than standard CXR (AUAFROC of 0.907 and 0.808, respectively; ≤ 0.005). In the person-wise analysis, BSp-DL with an area under the ROC curve (AUROC) of 0.984 and 0.931 for readers 1 and 2, respectively, showed better performance than standard CXR (AUROC of 0.915 and 0.798, respectively; ≤ 0.011) and comparable performance to BSt-DE (AUROC of 0.988 and 0.974; ≥ 0.064). BSt-DE and BSp-DL were superior to standard CXR for detecting nodules overlapping with bones ( < 0.017) or in the upper/middle lung zone ( < 0.017). BSt-DE was superior ( < 0.017) to BSp-DL in detecting peripheral and sub-centimeter nodules.
BSp-DL (GAN-based bone suppression) showed comparable performance to BSt-DE and can improve radiologists' performance in detecting pulmonary nodules on CXRs. Nevertheless, for better delineation of small and peripheral nodules, further technical improvements are required.
比较基于生成对抗网络(GAN)的骨抑制成像(BSp-DL)与双能技术的骨减影成像(BSt-DE)对放射科医师在胸部 X 线摄影(CXR)上检测肺结节的性能的影响。
共纳入 111 名成年人,其中 49 名患者有 83 个肺结节,他们均接受了双能技术的 CXR 和胸部 CT 检查。以 CT 为参考,两名独立的放射科医生在三次阅读会议(标准 CXR、BSt-DE CXR 和 BSp-DL CXR)上评估 CXR 图像是否存在肺结节。使用受试者工作特征(ROC)和替代自由响应 ROC(AFROC)曲线分析分别评估个体和结节水平的性能。进行了基于结节大小、位置和重叠骨存在的亚组分析。
BSt-DE 的 AFROC 曲线下面积(AUAFROC)分别为读者 1 和读者 2 的 0.996 和 0.976,BSp-DL 的 AUAFROC 分别为 0.981 和 0.958,均优于标准 CXR(AUAFROC 分别为 0.907 和 0.808; ≤ 0.005)。在个体水平分析中,BSp-DL 的 ROC 曲线下面积(AUROC)分别为读者 1 和读者 2 的 0.984 和 0.931,优于标准 CXR(AUROC 分别为 0.915 和 0.798; ≤ 0.011),与 BSt-DE 的性能相当(AUROC 分别为 0.988 和 0.974; ≥ 0.064)。BSt-DE 和 BSp-DL 均优于标准 CXR 用于检测与骨骼重叠( <0.017)或在上/中肺区( <0.017)的结节。BSt-DE 优于 BSp-DL( <0.017),可检测外周和亚厘米结节。
BSp-DL(基于 GAN 的骨抑制)与 BSt-DE 性能相当,可提高放射科医师在 CXR 上检测肺结节的性能。然而,为了更好地描绘小的和外周的结节,需要进一步的技术改进。