Suppr超能文献

一种基于强度的 2D/3D 图像配准中的新型骨抑制算法:开发和基于体模的验证。

A novel bone suppression algorithm in intensity-based 2D/3D image registration for real-time tumor motion monitoring: Development and phantom-based validation.

机构信息

Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria.

MedAustron Ion Therapy Center, Wiener Neustadt, Austria.

出版信息

Med Phys. 2022 Aug;49(8):5182-5194. doi: 10.1002/mp.15716. Epub 2022 Jun 6.

Abstract

BACKGROUND

Real-time tumor motion monitoring (TMM) is a crucial process for intra-fractional respiration management in lung cancer radiotherapy. Since the tumor can be partly or fully located behind the ribs, the TMM is challenging.

PURPOSE

The aim of this work was to develop a bone suppression (BS) algorithm designed for real-time 2D/3D marker-less TMM to increase the visibility of the tumor when overlapping with bony structures and consequently to improve the accuracy of TMM.

METHOD

A BS method was implemented in the in-house developed software for ultrafast intensity-based 2D/3D tumor registration (Fast Image-based Registration [FIRE]). The method operates on both, digitally reconstructed radiograph (DRR) and intra-fractional X-ray images. The bony structures are derived from computed tomography data by thresholding during ray-casting, and the resulting bone DRR is subtracted from intra-fractional X-ray images to obtain a soft-tissue-only image for subsequent tumor registration. The accuracy of TMM utilizing BS was evaluated within a retrospective phantom study with nine different 3D-printed tumor phantoms placed in the in-house developed Advanced Radiation DOSimetry (ARDOS) breathing phantom. A 24 mm craniocaudal tumor motion, including rib eclipses, was simulated, and X-ray images were acquired on the Elekta Versa HD Linac in the lateral and posterior-anterior directions. An error assessment for BS images was evaluated with respect to the ground truth tumor position.

RESULTS

A total error (root mean square error) of 0.87 ± 0.23 mm and 1.03 ± 0.26 mm was found for posterior-anterior and lateral imaging; the mean time for BS was 8.03 ± 1.54 ms. Without utilizing BS, TMM failed in all X-ray images since the registration algorithm focused on the rib position due to the predominant intensity of this tissue within DRR and X-ray images.

CONCLUSION

The BS algorithm developed and implemented improved the accuracy, robustness, and stability of real-time TMM in lung cancer in a phantom study, even in the case of rib interlude where normal tumor registration fails.

摘要

背景

实时肿瘤运动监测(TMM)是肺癌放射治疗中分次内呼吸管理的关键过程。由于肿瘤可能部分或完全位于肋骨后面,因此 TMM 具有挑战性。

目的

本研究旨在开发一种用于实时 2D/3D 无标记 TMM 的骨抑制(BS)算法,以增加与骨性结构重叠时肿瘤的可见度,并提高 TMM 的准确性。

方法

在内部开发的超快基于强度的 2D/3D 肿瘤配准软件(Fast Image-based Registration [FIRE])中实现了 BS 方法。该方法在数字重建射线照片(DRR)和分次内 X 射线图像上均起作用。通过在射线投射时对计算机断层扫描数据进行阈值处理,从 CT 数据中提取骨性结构,并从分次内 X 射线图像中减去得到仅软组织的图像,以便进行后续的肿瘤配准。利用 BS 在一个有九个不同的 3D 打印肿瘤体模的回顾性体模研究中评估 TMM 的准确性。模拟了 24mm 的颅尾肿瘤运动,包括肋骨遮挡,并在 Elekta Versa HD Linac 直线加速器上在侧位和前后位方向采集 X 射线图像。针对 BS 图像与肿瘤实际位置之间的误差进行了评估。

结果

前后位和侧位成像的总误差(均方根误差)分别为 0.87±0.23mm 和 1.03±0.26mm;BS 的平均用时为 8.03±1.54ms。由于在 DRR 和 X 射线图像中,该组织的强度较大,因此注册算法主要关注肋骨位置,因此,在所有 X 射线图像中,不使用 BS 时,TMM 都失败了。

结论

在体模研究中,开发并实施的 BS 算法提高了肺癌实时 TMM 的准确性、鲁棒性和稳定性,即使在肋骨中断的情况下(正常情况下肿瘤配准失败)也是如此。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aee/9540269/5e68e8fafd58/MP-49-5182-g005.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验