Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106-5065, USA.
Cancer Epidemiol Biomarkers Prev. 2011 Jun;20(6):1146-55. doi: 10.1158/1055-9965.EPI-10-0996. Epub 2011 Apr 14.
Inherited variability in genes that influence androgen metabolism has been associated with risk of prostate cancer. The objective of this analysis was to evaluate interactions for prostate cancer risk by using classification and regression tree (CART) models (i.e., decision trees), and to evaluate whether these interactive effects add information about prostate cancer risk prediction beyond that of "traditional" risk factors.
We compared CART models with traditional logistic regression (LR) models for associations of factors with prostate cancer risk using 1,084 prostate cancer cases and 941 controls. All analyses were stratified by race. We used unconditional LR to complement and compare with the race-stratified CART results using the area under curve (AUC) for the receiver operating characteristic curves.
The CART modeling of prostate cancer risk showed different interaction profiles by race. For European Americans, interactions among CYP3A43 genotype, history of benign prostate hypertrophy, family history of prostate cancer, and age at consent revealed a distinct hierarchy of gene-environment and gene-gene interactions, whereas for African Americans, interactions among family history of prostate cancer, individual proportion of European ancestry, number of GGC androgen receptor repeats, and CYP3A4/CYP3A5 haplotype revealed distinct interaction effects from those found in European Americans. For European Americans, the CART model had the highest AUC whereas for African Americans, the LR model with the CART discovered factors had the largest AUC.
These results provide new insight into underlying prostate cancer biology for European Americans and African Americans.
影响雄激素代谢的基因遗传变异与前列腺癌风险相关。本分析的目的是通过分类和回归树 (CART) 模型(即决策树)评估前列腺癌风险的交互作用,并评估这些相互作用是否在“传统”风险因素之外提供有关前列腺癌风险预测的信息。
我们比较了使用 1084 例前列腺癌病例和 941 例对照的 CART 模型与传统逻辑回归 (LR) 模型在与前列腺癌风险相关的因素中的关联。所有分析均按种族分层。我们使用无条件 LR 来补充和比较按种族分层的 CART 结果,使用受试者工作特征曲线下的面积 (AUC)。
前列腺癌风险的 CART 模型显示出不同的种族间交互作用特征。对于欧洲裔美国人,CYP3A43 基因型、良性前列腺增生史、前列腺癌家族史和同意时年龄之间的相互作用揭示了基因-环境和基因-基因相互作用的明显层次结构,而对于非裔美国人,前列腺癌家族史、个体欧洲祖先比例、GGC 雄激素受体重复数和 CYP3A4/CYP3A5 单倍型之间的相互作用则揭示了与欧洲裔美国人不同的相互作用效应。对于欧洲裔美国人,CART 模型的 AUC 最高,而对于非裔美国人,具有 CART 发现的因素的 LR 模型的 AUC 最大。
这些结果为欧洲裔美国人和非裔美国人的前列腺癌生物学提供了新的见解。