Suppr超能文献

基于感觉运动节律的无创脑机接口

Noninvasive Brain-Computer Interfaces Based on Sensorimotor Rhythms.

作者信息

He Bin, Baxter Bryan, Edelman Bradley J, Cline Christopher C, Ye Wendy

机构信息

Department of Biomedical Engineering, University of Minnesota.

Institute for Engineering in Medicine, University of Minnesota.

出版信息

Proc IEEE Inst Electr Electron Eng. 2015 Jun;103(6):907-925. doi: 10.1109/jproc.2015.2407272. Epub 2015 May 20.

Abstract

Brain-computer interfaces (BCIs) have been explored in the field of neuroengineering to investigate how the brain can use these systems to control external devices. We review the principles and approaches we have taken to develop a sensorimotor rhythm EEG based brain-computer interface (BCI). The methods include developing BCI systems incorporating the control of physical devices to increase user engagement, improving BCI systems by inversely mapping scalp-recorded EEG signals to the cortical source domain, integrating BCI with noninvasive neuromodulation strategies to improve learning, and incorporating mind-body awareness training to enhance BCI learning and performance. The challenges and merits of these strategies are discussed, together with recent findings. Our work indicates that the sensorimotor-rhythm-based noninvasive BCI has the potential to provide communication and control capabilities as an alternative to physiological motor pathways.

摘要

脑机接口(BCIs)已在神经工程领域得到探索,以研究大脑如何利用这些系统来控制外部设备。我们回顾了我们为开发基于感觉运动节律脑电图的脑机接口(BCI)所采用的原理和方法。这些方法包括开发结合物理设备控制的BCI系统以提高用户参与度,通过将头皮记录的脑电信号反向映射到皮质源域来改进BCI系统,将BCI与非侵入性神经调节策略相结合以改善学习,以及纳入身心觉知训练以增强BCI学习和性能。讨论了这些策略的挑战和优点以及近期的研究结果。我们的工作表明,基于感觉运动节律的非侵入性BCI有潜力提供通信和控制能力,作为生理运动通路的替代方案。

相似文献

1
Noninvasive Brain-Computer Interfaces Based on Sensorimotor Rhythms.
Proc IEEE Inst Electr Electron Eng. 2015 Jun;103(6):907-925. doi: 10.1109/jproc.2015.2407272. Epub 2015 May 20.
2
What External Variables Affect Sensorimotor Rhythm Brain-Computer Interface (SMR-BCI) Performance?
HCA Healthc J Med. 2021 Jun 28;2(3):143-162. doi: 10.36518/2689-0216.1188. eCollection 2021.
4
Brain-computer interfaces: Definitions and principles.
Handb Clin Neurol. 2020;168:15-23. doi: 10.1016/B978-0-444-63934-9.00002-0.
5
Brain-computer interfaces for communication and control.
Clin Neurophysiol. 2002 Jun;113(6):767-91. doi: 10.1016/s1388-2457(02)00057-3.
6
Machine-learning-based coadaptive calibration for brain-computer interfaces.
Neural Comput. 2011 Mar;23(3):791-816. doi: 10.1162/NECO_a_00089. Epub 2010 Dec 16.
7
Classification of motor imagery EEG using deep learning increases performance in inefficient BCI users.
PLoS One. 2022 Jul 22;17(7):e0268880. doi: 10.1371/journal.pone.0268880. eCollection 2022.
9
Behind the Scenes of Noninvasive Brain-Computer Interfaces: A Review of Electroencephalography Signals, How They Are Recorded, and Why They Matter.
Perspect ASHA Spec Interest Groups. 2019 Dec;4(6):1622-1636. doi: 10.1044/2019_pers-19-00059. Epub 2019 Nov 9.

引用本文的文献

1
A Capsule Decision Neural Network Based on Transfer Learning for EEG Signal Classification.
Biomimetics (Basel). 2025 Apr 4;10(4):225. doi: 10.3390/biomimetics10040225.
2
Adaptive deep feature representation learning for cross-subject EEG decoding.
BMC Bioinformatics. 2024 Dec 31;25(1):393. doi: 10.1186/s12859-024-06024-w.
3
A novel dual-step transfer framework based on domain selection and feature alignment for motor imagery decoding.
Cogn Neurodyn. 2024 Dec;18(6):3549-3563. doi: 10.1007/s11571-023-10053-1. Epub 2024 May 25.
4
Neural functional rehabilitation: exploring neuromuscular reconstruction technology advancements and challenges.
Neural Regen Res. 2024 Dec 7;21(1):173-86. doi: 10.4103/NRR.NRR-D-24-00613.
5
A continuous pursuit dataset for online deep learning-based EEG brain-computer interface.
Sci Data. 2024 Nov 20;11(1):1256. doi: 10.1038/s41597-024-04090-6.
6
Compact convolutional transformer for subject-independent motor imagery EEG-based BCIs.
Sci Rep. 2024 Oct 28;14(1):25775. doi: 10.1038/s41598-024-73755-4.
8
Non-Invasive Brain-Computer Interfaces: State of the Art and Trends.
IEEE Rev Biomed Eng. 2025;18:26-49. doi: 10.1109/RBME.2024.3449790. Epub 2025 Jan 28.
9
Time-frequency feature extraction based on multivariable synchronization index for training-free SSVEP-based BCI.
Cogn Neurodyn. 2024 Aug;18(4):1733-1741. doi: 10.1007/s11571-023-10035-3. Epub 2023 Dec 11.

本文引用的文献

1
The impact of mind-body awareness training on the early learning of a brain-computer interface.
Technology (Singap World Sci). 2014 Sep;2(3):254-260. doi: 10.1142/S233954781450023X.
2
Discriminating hand gesture motor imagery tasks using cortical current density estimation.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:1314-7. doi: 10.1109/EMBC.2014.6943840.
3
Applications of transcranial direct current stimulation for understanding brain function.
Trends Neurosci. 2014 Dec;37(12):742-53. doi: 10.1016/j.tins.2014.08.003. Epub 2014 Sep 2.
4
Laterality of brain activity during motor imagery is modulated by the provision of source level neurofeedback.
Neuroimage. 2014 Nov 1;101:159-67. doi: 10.1016/j.neuroimage.2014.06.066. Epub 2014 Jul 3.
6
Visual and auditory brain-computer interfaces.
IEEE Trans Biomed Eng. 2014 May;61(5):1436-47. doi: 10.1109/TBME.2014.2300164.
7
Brain-computer interfaces using sensorimotor rhythms: current state and future perspectives.
IEEE Trans Biomed Eng. 2014 May;61(5):1425-35. doi: 10.1109/TBME.2014.2312397.
8
Clinical evaluation of BrainTree, a motor imagery hybrid BCI speller.
J Neural Eng. 2014 Jun;11(3):036003. doi: 10.1088/1741-2560/11/3/036003. Epub 2014 Apr 16.
9
A closed-loop brain-computer interface triggering an active ankle-foot orthosis for inducing cortical neural plasticity.
IEEE Trans Biomed Eng. 2014 Jul;61(7):2092-101. doi: 10.1109/TBME.2014.2313867. Epub 2014 Mar 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验