Suppr超能文献

基于脑电图的脑机接口的脑编码与解码机制综述

Review of brain encoding and decoding mechanisms for EEG-based brain-computer interface.

作者信息

Xu Lichao, Xu Minpeng, Jung Tzyy-Ping, Ming Dong

机构信息

Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.

Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China.

出版信息

Cogn Neurodyn. 2021 Aug;15(4):569-584. doi: 10.1007/s11571-021-09676-z. Epub 2021 Apr 10.

Abstract

A brain-computer interface (BCI) can connect humans and machines directly and has achieved successful applications in the past few decades. Many new BCI paradigms and algorithms have been developed in recent years. Therefore, it is necessary to review new progress in BCIs. This paper summarizes progress for EEG-based BCIs from the perspective of encoding paradigms and decoding algorithms, which are two key elements of BCI systems. Encoding paradigms are grouped by their underlying neural meachanisms, namely sensory- and motor-related, vision-related, cognition-related and hybrid paradigms. Decoding algorithms are reviewed in four categories, namely decomposition algorithms, Riemannian geometry, deep learning and transfer learning. This review will provide a comprehensive overview of both modern primary paradigms and algorithms, making it helpful for those who are developing BCI systems.

摘要

脑机接口(BCI)能够直接连接人类与机器,并且在过去几十年中已取得成功应用。近年来,许多新的BCI范式和算法不断涌现。因此,有必要回顾一下BCIs的新进展。本文从编码范式和解码算法这两个BCI系统的关键要素角度,总结了基于脑电图(EEG)的BCIs的进展。编码范式按其潜在的神经机制进行分类,即与感觉和运动相关、与视觉相关、与认知相关以及混合范式。解码算法分为四类进行综述,即分解算法、黎曼几何、深度学习和迁移学习。本综述将全面概述现代主要范式和算法,有助于BCI系统开发者。

相似文献

4
A comprehensive review of EEG-based brain-computer interface paradigms.基于脑电图的脑机接口范式的综合评述。
J Neural Eng. 2019 Feb;16(1):011001. doi: 10.1088/1741-2552/aaf12e. Epub 2018 Nov 15.

引用本文的文献

10
Brain-computer interface paradigms and neural coding.脑机接口范式与神经编码。
Front Neurosci. 2024 Jan 15;17:1345961. doi: 10.3389/fnins.2023.1345961. eCollection 2023.

本文引用的文献

4
Internal Feature Selection Method of CSP Based on L1-Norm and Dempster-Shafer Theory.基于 L1-范数和证据理论的 CSP 内部特征选择方法。
IEEE Trans Neural Netw Learn Syst. 2021 Nov;32(11):4814-4825. doi: 10.1109/TNNLS.2020.3015505. Epub 2021 Oct 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验