Department of Chemistry, Simon Fraser University , 8888 University Drive, Burnaby, British Columbia, Canada.
Biochemistry. 2011 May 24;50(20):4298-308. doi: 10.1021/bi101808h. Epub 2011 May 2.
The MelA gene from Citrobacter freundii, which encodes a glycosyl hydrolase family 4 (GH4) α-galactosidase, has been cloned and expressed in Escherichia coli. The recombinant enzyme catalyzes the hydrolysis of phenyl α-galactosides via a redox elimination-addition mechanism involving oxidation of the hydroxyl group at C-3 and elimination of phenol across the C-1-C-2 bond to give an enzyme-bound glycal intermediate. For optimal activity, the MelA enzyme requires two cofactors, NAD(+) and Mn(2+), and the addition of a reducing agent, such as mercaptoethanol. To delineate the mechanism of action for this GH4 enzyme, we measured leaving group effects, and the derived β(lg) values on V and V/K are indistinguishable from zero (-0.01 ± 0.02 and 0.02 ± 0.04, respectively). Deuterium kinetic isotope effects (KIEs) were measured for the weakly activated substrate phenyl α-D-galactopyranoside in which isotopic substitution was incorporated at C-1, C-2, or C-3. KIEs of 1.06 ± 0.07, 0.91 ± 0.04, and 1.02 ± 0.06 were measured on V for the 1-(2)H, 2-(2)H, and 3-(2)H isotopic substrates, respectively. The corresponding values on V/K were 1.13 ± 0.07, 1.74 ± 0.06, and 1.74 ± 0.05, respectively. To determine if the KIEs report on a single step or on a virtual transition state, we measured KIEs using doubly deuterated substrates. The measured (D)V/K KIEs for MelA-catalyzed hydrolysis of phenyl α-D-galactopyranoside on the dideuterated substrates, (D)V/K((3-D)/(2-D,3-D)) and (D)V/K((2-D)/(2-D,3-D)), are 1.71 ± 0.12 and 1.71 ± 0.13, respectively. In addition, the corresponding values on V, (D)V((3-D)/(2-D,3-D)) and (D)V((2-D)/(2-D,3-D)), are 0.91 ± 0.06 and 1.01 ± 0.06, respectively. These observations are consistent with oxidation at C-3, which occurs via the transfer of a hydride to the on-board NAD(+), being concerted with proton removal at C-2 and the fact that this step is the first irreversible step for the MelA α-galactosidase-catalyzed reactions of aryl substrates. In addition, the rate-limiting step for V(max) must come after this irreversible step in the reaction mechanism.
从弗氏柠檬酸杆菌中克隆并表达了编码糖苷水解酶家族 4(GH4)α-半乳糖苷酶的 MelA 基因。重组酶通过涉及 C-3 上的羟基氧化和 C-1-C-2 键上苯酚消除的氧化还原消除-添加机制,催化苯-α-半乳糖苷的水解,生成酶结合的糖基中间体。为了获得最佳活性,MelA 酶需要两种辅因子,NAD(+)和 Mn(2+),以及还原剂,如巯基乙醇。为了阐明这种 GH4 酶的作用机制,我们测量了离去基团效应,衍生的 V 和 V/K 上的β(lg)值与零值(分别为-0.01±0.02 和 0.02±0.04)没有区别。在弱激活底物苯-α-D-吡喃半乳糖苷中测量了氘动力学同位素效应(KIE),其中在 C-1、C-2 或 C-3 处掺入了同位素取代。对于 1-(2)H、2-(2)H 和 3-(2)H 同位素底物,V 上测量的 KIE 分别为 1.06±0.07、0.91±0.04 和 1.02±0.06。V/K 上的相应值分别为 1.13±0.07、1.74±0.06 和 1.74±0.05。为了确定 KIE 是否报告单个步骤或虚拟过渡态,我们使用双重氘化底物测量 KIE。MelA 催化苯-α-D-吡喃半乳糖苷水解的(D)V/K KIE 对于二氘化底物(D)V/K((3-D)/(2-D,3-D))和(D)V/K((2-D)/(2-D,3-D)),分别为 1.71±0.12 和 1.71±0.13。此外,V 上的相应值,(D)V((3-D)/(2-D,3-D))和(D)V((2-D)/(2-D,3-D)),分别为 0.91±0.06 和 1.01±0.06。这些观察结果与 C-3 的氧化一致,C-3 的氧化通过向板载 NAD(+)转移氢化物发生,与 C-2 上的质子消除同时发生,并且该步骤是 MelAα-半乳糖苷酶催化芳基底物反应的第一个不可逆步骤。此外,V(max)的限速步骤必须在反应机制中的这个不可逆步骤之后。