Suppr超能文献

输血问题:异常 S-亚硝基化作用的作用。

The transfusion problem: role of aberrant S-nitrosylation.

机构信息

Institute for Transformative Molecular Medicine, Department of Medicine, Case Western Reserve University and University Hospitals, Cleveland, Ohio, USA.

出版信息

Transfusion. 2011 Apr;51(4):852-8. doi: 10.1111/j.1537-2995.2011.03097.x.

Abstract

Protein S-nitrosylation (the binding of a nitric oxide [NO] group to a cysteine thiol) is a major mechanism through which the ubiquitous cellular influence of NO is exerted. Disruption of S-nitrosylation is associated with a wide range of pathophysiologic conditions. Hemoglobin (Hb) exemplifies both of these concepts. It is the prototypical S-nitrosylated protein in that it binds, activates, and deploys NO. Within red blood cells (RBCs), Hb is S-nitrosylated during the respiratory cycle and thereby conveys NO bioactivity that may be dispensed to regulate local blood flow in the physiologic response known as hypoxic vasodilation. Hb thus both delivers oxygen directly and delivers vasoactivity to potentially optimize tissue perfusion in concert with local metabolic demand. Accordingly, decreased levels of S-nitrosylated Hb (also known as S-nitrosohemoglobin) and/or impaired delivery of RBC-derived NO bioactivity have been observed in a variety of disease states that are characterized by tissue hypoxemia. It has been shown recently that storage of blood depletes S-nitrosylated Hb, accompanied by reduced ability of RBCs to induce vasodilation. This defect appears to account in significant part for the impaired ability of banked RBCs to deliver oxygen. Renitrosylation can correct this impairment and thus may offer a means to ameliorate the disruptions in tissue perfusion produced by transfusion.

摘要

蛋白质 S-亚硝基化(一氧化氮 [NO] 基团与半胱氨酸巯基的结合)是 NO 对细胞普遍影响的主要机制之一。S-亚硝基化的破坏与广泛的病理生理状况有关。血红蛋白 (Hb) 就是这两个概念的典型代表。它是典型的 S-亚硝基化蛋白,能结合、激活和部署 NO。在红细胞 (RBC) 中,Hb 在呼吸循环过程中发生 S-亚硝基化,从而传递可能用于调节缺氧性血管舒张等生理反应中局部血流的 NO 生物活性。因此,Hb 既能直接输送氧气,又能输送血管活性物质,以与局部代谢需求相协调,从而优化组织灌注。因此,在各种以组织缺氧为特征的疾病状态中,观察到 S-亚硝基化 Hb(也称为 S-亚硝基血红蛋白)水平降低和/或 RBC 衍生的 NO 生物活性的输送受损。最近有研究表明,血液储存会消耗 S-亚硝基化 Hb,同时 RBC 诱导血管舒张的能力也会降低。这一缺陷似乎在很大程度上解释了储存 RBC 输送氧气能力受损的原因。再亚硝基化可以纠正这种损伤,从而可能提供一种改善输血引起的组织灌注障碍的方法。

相似文献

1
The transfusion problem: role of aberrant S-nitrosylation.
Transfusion. 2011 Apr;51(4):852-8. doi: 10.1111/j.1537-2995.2011.03097.x.
2
Role of Nitric Oxide Carried by Hemoglobin in Cardiovascular Physiology: Developments on a Three-Gas Respiratory Cycle.
Circ Res. 2020 Jan 3;126(1):129-158. doi: 10.1161/CIRCRESAHA.119.315626. Epub 2019 Oct 8.
3
Protein disulfide isomerase may facilitate the efflux of nitrite derived S-nitrosothiols from red blood cells.
Redox Biol. 2013 Jul 16;1(1):373-80. doi: 10.1016/j.redox.2013.07.002. eCollection 2013.
4
S-nitrosohemoglobin deficiency: a mechanism for loss of physiological activity in banked blood.
Proc Natl Acad Sci U S A. 2007 Oct 23;104(43):17058-62. doi: 10.1073/pnas.0707958104. Epub 2007 Oct 11.
5
Optimized S-nitrosohemoglobin Synthesis in Red Blood Cells to Preserve Hypoxic Vasodilation Via Cys93.
J Pharmacol Exp Ther. 2022 Jul;382(1):1-10. doi: 10.1124/jpet.122.001194. Epub 2022 May 5.
6
Renitrosylation of banked human red blood cells improves deformability and reduces adhesivity.
Transfusion. 2015 Oct;55(10):2452-63. doi: 10.1111/trf.13189. Epub 2015 Jun 22.
7
Essential Role of Hemoglobin βCys93 in Cardiovascular Physiology.
Physiology (Bethesda). 2020 Jul 1;35(4):234-243. doi: 10.1152/physiol.00040.2019.
8
S-nitrosylation therapy to improve oxygen delivery of banked blood.
Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):11529-34. doi: 10.1073/pnas.1306489110. Epub 2013 Jun 24.
9
Hemoglobin, nitric oxide and molecular mechanisms of hypoxic vasodilation.
Trends Mol Med. 2009 Oct;15(10):452-60. doi: 10.1016/j.molmed.2009.08.002. Epub 2009 Sep 24.
10
Hemoglobin β93 Cysteine Is Not Required for Export of Nitric Oxide Bioactivity From the Red Blood Cell.
Circulation. 2019 Jun 4;139(23):2654-2663. doi: 10.1161/CIRCULATIONAHA.118.039284. Epub 2019 Mar 25.

引用本文的文献

1
Transfusion in children with acute respiratory distress syndrome.
Ann Transl Med. 2019 Oct;7(19):511. doi: 10.21037/atm.2019.08.28.
2
Impact of stored red cells on clinical outcome in critically ill.
Asian J Transfus Sci. 2019 Jan-Jun;13(1):17-22. doi: 10.4103/ajts.AJTS_76_18.
3
Red blood cell storage lesion: causes and potential clinical consequences.
Blood Transfus. 2019 Jan;17(1):27-52. doi: 10.2450/2019.0217-18.
4
Physiologic Impact of Circulating RBC Microparticles upon Blood-Vascular Interactions.
Front Physiol. 2018 Jan 12;8:1120. doi: 10.3389/fphys.2017.01120. eCollection 2017.
5
S-Nitrosohemoglobin Levels and Patient Outcome After Transfusion During Pediatric Bypass Surgery.
Clin Transl Sci. 2018 Mar;11(2):237-243. doi: 10.1111/cts.12530. Epub 2017 Dec 12.
6
Influence of red blood cell-derived microparticles upon vasoregulation.
Blood Transfus. 2017 Oct;15(6):522-534. doi: 10.2450/2017.0353-16. Epub 2017 May 15.
7
Enhancing uniformity and overall quality of red cell concentrate with anaerobic storage.
Blood Transfus. 2017 Mar;15(2):172-181. doi: 10.2450/2017.0325-16.
8
Specific Etiologies Associated With the Multiple Organ Dysfunction Syndrome in Children: Part 2.
Pediatr Crit Care Med. 2017 Mar;18(3_suppl Suppl 1):S58-S66. doi: 10.1097/PCC.0000000000001051.
10
Transfusion related morbidity in premature babies: Possible mechanisms and implications for practice.
World J Clin Pediatr. 2014 Aug 8;3(3):19-29. doi: 10.5409/wjcp.v3.i3.19.

本文引用的文献

1
Nitric oxide transport in blood: a third gas in the respiratory cycle.
Compr Physiol. 2011 Jan;1(1):541-68. doi: 10.1002/cphy.c090009.
2
Pharmacologically augmented S-nitrosylated hemoglobin improves recovery from murine subarachnoid hemorrhage.
Stroke. 2011 Feb;42(2):471-6. doi: 10.1161/STROKEAHA.110.600569. Epub 2010 Dec 30.
3
Transfusion requirements after cardiac surgery: the TRACS randomized controlled trial.
JAMA. 2010 Oct 13;304(14):1559-67. doi: 10.1001/jama.2010.1446.
4
Identification of S-nitrosylated targets of thioredoxin using a quantitative proteomic approach.
Biochemistry. 2010 Aug 17;49(32):6963-9. doi: 10.1021/bi100619k.
6
Hemoglobin, nitric oxide and molecular mechanisms of hypoxic vasodilation.
Trends Mol Med. 2009 Oct;15(10):452-60. doi: 10.1016/j.molmed.2009.08.002. Epub 2009 Sep 24.
7
Protein S-nitrosylation in health and disease: a current perspective.
Trends Mol Med. 2009 Sep;15(9):391-404. doi: 10.1016/j.molmed.2009.06.007. Epub 2009 Aug 31.
9
Assays for S-nitrosothiols and S-nitrosylated proteins and mechanistic insights into cardioprotection.
Circulation. 2009 Jul 21;120(3):190-3. doi: 10.1161/CIRCULATIONAHA.109.876607. Epub 2009 Jul 6.
10
Interactions of NO with hemoglobin: from microbes to man.
Methods Enzymol. 2008;436:131-68. doi: 10.1016/S0076-6879(08)36008-X.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验