Suppr超能文献

利用亚硝酸盐氧化动力学、过氧化物酶-2氧化以及血红蛋白和游离血红素测量来预测储存依赖性红细胞损伤。

Predicting storage-dependent damage to red blood cells using nitrite oxidation kinetics, peroxiredoxin-2 oxidation, and hemoglobin and free heme measurements.

作者信息

Oh Joo-Yeun, Stapley Ryan, Harper Victoria, Marques Marisa B, Patel Rakesh P

机构信息

Department of Pathology.

Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama.

出版信息

Transfusion. 2015 Dec;55(12):2967-78. doi: 10.1111/trf.13248. Epub 2015 Jul 22.

Abstract

BACKGROUND

Storage-dependent damage to red blood cells (RBCs) varies significantly. Identifying RBC units that will undergo higher levels of hemolysis during storage may allow for more efficient inventory management decision-making. Oxidative-stress mediates storage-dependent damage to RBCs and will depend on the oxidant:antioxidant balance. We reasoned that this balance or redox tone will serve as a determinant of how a given RBC unit stores and that its assessment in "young" RBCs will predict storage-dependent hemolysis.

STUDY DESIGN AND METHODS

RBCs were sampled from bags and segments stored for 7 to 42 days. Redox tone was assessed by nitrite oxidation kinetics and peroxiredoxin-2 (Prx-2) oxidation. In parallel, hemolysis was assessed by measuring cell-free hemoglobin (Hb) and free heme (hemin). Correlation analyses were performed to determine if Day 7 measurements predicted either the level of hemolysis at Day 35 or the increase in hemolysis during storage.

RESULTS

Higher Day 7 Prx-2 oxidation was associated with higher Day 35 Prx-2 oxidation, suggesting that early assessment of this variable may identify RBCs that will incur the most oxidative damage during storage. RBCs that oxidized nitrite faster on Day 7 were associated with the greatest levels of storage-dependent hemolysis and increases in Prx-2 oxidation. An inverse relationship between storage-dependent changes in oxyhemoglobin and free heme was observed underscoring an unappreciated reciprocity between these molecular species. Moreover, free heme was higher in the bag compared to paired segments, with opposite trends observed for free Hb.

CONCLUSION

Measurement of Prx-2 oxidation and nitrite oxidation kinetics early during RBC storage may predict storage-dependent damage to RBC including hemolysis-dependent formation of free Hb and heme.

摘要

背景

红细胞(RBC)的储存依赖性损伤差异显著。识别在储存期间将经历更高水平溶血的红细胞单位可能有助于做出更有效的库存管理决策。氧化应激介导红细胞的储存依赖性损伤,并且将取决于氧化剂与抗氧化剂的平衡。我们推断这种平衡或氧化还原状态将决定给定红细胞单位的储存方式,并且在“年轻”红细胞中对其进行评估将预测储存依赖性溶血。

研究设计与方法

从储存7至42天的血袋和血段中采集红细胞。通过亚硝酸盐氧化动力学和过氧化物酶2(Prx-2)氧化评估氧化还原状态。同时,通过测量游离血红蛋白(Hb)和游离血红素(高铁血红素)评估溶血情况。进行相关性分析以确定第7天的测量值是否能预测第35天的溶血水平或储存期间溶血的增加。

结果

第7天高的Prx-2氧化与第35天高的Prx-2氧化相关,表明对该变量的早期评估可能识别出在储存期间将遭受最大氧化损伤的红细胞。第7天亚硝酸盐氧化更快的红细胞与最高水平的储存依赖性溶血和Prx-2氧化增加相关。观察到氧合血红蛋白和游离血红素的储存依赖性变化之间呈负相关,突出了这些分子物种之间未被重视的相互关系。此外,与配对血段相比,血袋中的游离血红素更高,而游离Hb则呈现相反趋势。

结论

在红细胞储存早期测量Prx-2氧化和亚硝酸盐氧化动力学可能预测红细胞的储存依赖性损伤,包括溶血依赖性游离Hb和血红素的形成。

相似文献

2
Peroxiredoxin-2 recycling is inhibited during erythrocyte storage.
Antioxid Redox Signal. 2015 Feb 1;22(4):294-307. doi: 10.1089/ars.2014.5950. Epub 2014 Nov 10.
3
Damage to red blood cells during whole blood storage.
J Trauma Acute Care Surg. 2020 Aug;89(2):344-350. doi: 10.1097/TA.0000000000002730.
4
Red blood cell washing, nitrite therapy, and antiheme therapies prevent stored red blood cell toxicity after trauma-hemorrhage.
Free Radic Biol Med. 2015 Aug;85:207-18. doi: 10.1016/j.freeradbiomed.2015.04.025. Epub 2015 Apr 29.
5
The Impact of Surgery and Stored Red Blood Cell Transfusions on Nitric Oxide Homeostasis.
Anesth Analg. 2016 Aug;123(2):274-82. doi: 10.1213/ANE.0000000000001392.
6
Peroxiredoxin-2 recycling is slower in denser and pediatric sickle cell red cells.
FASEB J. 2022 Apr;36(4):e22267. doi: 10.1096/fj.202200052R.
7
Peroxiredoxin II is essential for preventing hemolytic anemia from oxidative stress through maintaining hemoglobin stability.
Biochem Biophys Res Commun. 2012 Sep 28;426(3):427-32. doi: 10.1016/j.bbrc.2012.08.113. Epub 2012 Aug 30.
8
Transfusion-related biologic effects and free hemoglobin, heme, and iron.
Transfusion. 2013 Apr;53(4):732-40. doi: 10.1111/j.1537-2995.2012.03837.x. Epub 2012 Aug 6.
9
Assessment of changes in plasma hemoglobin and potassium levels in red cell units during processing and storage.
Transfus Apher Sci. 2015 Jun;52(3):319-25. doi: 10.1016/j.transci.2015.01.009. Epub 2015 Jan 28.
10
Sex-related aspects of the red blood cell storage lesion.
Blood Transfus. 2021 May;19(3):224-236. doi: 10.2450/2020.0141-20. Epub 2020 Oct 9.

引用本文的文献

2
The immune suppressive properties of damage associated molecular patterns in the setting of sterile traumatic injury.
Front Immunol. 2023 Aug 15;14:1239683. doi: 10.3389/fimmu.2023.1239683. eCollection 2023.
5
Peroxiredoxin-2 recycling is slower in denser and pediatric sickle cell red cells.
FASEB J. 2022 Apr;36(4):e22267. doi: 10.1096/fj.202200052R.
8
Non-invasive analysis of stored red blood cells using diffuse resonance Raman spectroscopy.
Analyst. 2018 Dec 3;143(24):5950-5958. doi: 10.1039/c8an01135d.
9
Characterization of Storage-Induced Red Blood Cell Hemolysis Using Raman Spectroscopy.
Lab Med. 2018 Oct 11;49(4):298-310. doi: 10.1093/labmed/lmy018.
10
Role of heme in lung bacterial infection after trauma hemorrhage and stored red blood cell transfusion: A preclinical experimental study.
PLoS Med. 2018 Mar 9;15(3):e1002522. doi: 10.1371/journal.pmed.1002522. eCollection 2018 Mar.

本文引用的文献

1
Red blood cell washing, nitrite therapy, and antiheme therapies prevent stored red blood cell toxicity after trauma-hemorrhage.
Free Radic Biol Med. 2015 Aug;85:207-18. doi: 10.1016/j.freeradbiomed.2015.04.025. Epub 2015 Apr 29.
2
Effects of storage-aged red blood cell transfusions on endothelial function in hospitalized patients.
Transfusion. 2015 Apr;55(4):782-90. doi: 10.1111/trf.12919. Epub 2014 Nov 13.
3
Restoration of intracellular ATP production in banked red blood cells improves inducible ATP export and suppresses RBC-endothelial adhesion.
Am J Physiol Heart Circ Physiol. 2014 Dec 15;307(12):H1737-44. doi: 10.1152/ajpheart.00542.2014. Epub 2014 Oct 10.
4
Peroxiredoxin-2 recycling is inhibited during erythrocyte storage.
Antioxid Redox Signal. 2015 Feb 1;22(4):294-307. doi: 10.1089/ars.2014.5950. Epub 2014 Nov 10.
5
Circadian rhythm of hyperoxidized peroxiredoxin II is determined by hemoglobin autoxidation and the 20S proteasome in red blood cells.
Proc Natl Acad Sci U S A. 2014 Aug 19;111(33):12043-8. doi: 10.1073/pnas.1401100111. Epub 2014 Aug 4.
6
Metabolomics of ADSOL (AS-1) red blood cell storage.
Transfus Med Rev. 2014 Apr;28(2):41-55. doi: 10.1016/j.tmrv.2014.01.003. Epub 2014 Feb 5.
7
The level of complement activation fragments is higher in red blood cell units than segments.
Transfus Apher Sci. 2013 Dec;49(3):692-3. doi: 10.1016/j.transci.2013.10.001. Epub 2013 Oct 21.
8
Segments from red blood cell units should not be used for quality testing.
Transfusion. 2014 Feb;54(2):451-5. doi: 10.1111/trf.12303. Epub 2013 Jul 9.
9
Glucose-6-phosphate dehydrogenase deficiency in transfusion medicine: the unknown risks.
Vox Sang. 2013 Nov;105(4):271-82. doi: 10.1111/vox.12068. Epub 2013 Jul 2.
10
Strain-specific red blood cell storage, metabolism, and eicosanoid generation in a mouse model.
Transfusion. 2014 Jan;54(1):137-48. doi: 10.1111/trf.12264. Epub 2013 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验