Suppr超能文献

基于微流控技术的生物分子 18F 标记用于免疫正电子发射断层扫描。

Microfluidic-based 18F-labeling of biomolecules for immuno-positron emission tomography.

机构信息

College of Electronics and Information Engineering, Wuhan Textile University, Wuhan, China.

出版信息

Mol Imaging. 2011 Jun;10(3):168-76, 1-7.

Abstract

Methods for tagging biomolecules with fluorine 18 as immuno-positron emission tomography (immunoPET) tracers require tedious optimization of radiolabeling conditions and can consume large amounts of scarce biomolecules. We describe an improved method using a digital microfluidic droplet generation (DMDG) chip, which provides computer-controlled metering and mixing of 18F tag, biomolecule, and buffer in defined ratios, allowing rapid scouting of reaction conditions in nanoliter volumes. The identified optimized conditions were then translated to bench-scale 18F labeling of a cancer-specific engineered antibody fragments, enabling microPET imaging of tumors in xenografted mice at 0.5 to 4 hours postinjection.

摘要

方法用氟 18 标记生物分子作为免疫正电子发射断层扫描(immunoPET)示踪剂需要繁琐的优化放射性标记条件,并消耗大量的稀缺生物分子。我们描述了一种改进的方法,使用数字微流控液滴生成(DMDG)芯片,它提供了计算机控制的计量和混合 18F 标签,生物分子和缓冲液以定义的比例,允许快速侦察反应条件在纳升体积。确定的优化条件,然后转化为台式 18F 标记的癌症特异性工程抗体片段,使肿瘤微 PET 成像在异种移植小鼠在 0.5 至 4 小时后注射。

相似文献

2
The Current Role of Microfluidics in Radiofluorination Chemistry.
Mol Imaging Biol. 2020 Jun;22(3):463-475. doi: 10.1007/s11307-019-01414-6.
3
Continuous-Flow Synthesis of N-Succinimidyl 4-[18F]fluorobenzoate Using a Single Microfluidic Chip.
PLoS One. 2016 Jul 13;11(7):e0159303. doi: 10.1371/journal.pone.0159303. eCollection 2016.
4
AlF-Labeling Of Heat-Sensitive Biomolecules for Positron Emission Tomography Imaging.
Theranostics. 2017 Jul 14;7(11):2924-2939. doi: 10.7150/thno.20094. eCollection 2017.
5
Microfluidic radiosynthesis and biodistribution of [18 F] 2-(5-fluoro-pentyl)-2-methyl malonic acid.
J Labelled Comp Radiopharm. 2013 May 15;56(5):289-94. doi: 10.1002/jlcr.3016. Epub 2013 Feb 12.
6
Efficient radiosynthesis of 3'-deoxy-3'-18F-fluorothymidine using electrowetting-on-dielectric digital microfluidic chip.
J Nucl Med. 2014 Feb;55(2):321-8. doi: 10.2967/jnumed.113.121053. Epub 2013 Dec 23.
7
Synthesis and preclinical evaluation of an AlF radiofluorinated GLU-UREA-LYS(AHX)-HBED-CC PSMA ligand.
Eur J Nucl Med Mol Imaging. 2016 Nov;43(12):2122-2130. doi: 10.1007/s00259-016-3437-y. Epub 2016 Jun 22.
9
New strategies for rapid (18)F-radiolabeling of biomolecules for radionuclide-based in vivo imaging.
Bioconjug Chem. 2015 Jun 17;26(6):1000-3. doi: 10.1021/acs.bioconjchem.5b00180. Epub 2015 May 19.
10
F-labeled anti-human CD20 cys-diabody for same-day immunoPET in a model of aggressive B cell lymphoma in human CD20 transgenic mice.
Eur J Nucl Med Mol Imaging. 2019 Feb;46(2):489-500. doi: 10.1007/s00259-018-4214-x. Epub 2018 Nov 19.

引用本文的文献

1
Exploiting Sound for Emerging Applications of Extracellular Vesicles.
Nano Res. 2024 Feb;17(2):462-475. doi: 10.1007/s12274-023-5840-6. Epub 2023 Jul 1.
3
Noninvasive prenatal diagnosis targeting fetal nucleated red blood cells.
J Nanobiotechnology. 2022 Dec 30;20(1):546. doi: 10.1186/s12951-022-01749-3.
4
Cerenkov Luminescence Imaging in the Development and Production of Radiopharmaceuticals.
Front Phys. 2021;9. doi: 10.3389/fphy.2021.632056. Epub 2021 Mar 3.
6
Development and implementation of ISAR, a new synthesis platform for radiopharmaceutical production.
EJNMMI Radiopharm Chem. 2019 Sep 18;4(1):24. doi: 10.1186/s41181-019-0077-0.
7
F-labeled anti-human CD20 cys-diabody for same-day immunoPET in a model of aggressive B cell lymphoma in human CD20 transgenic mice.
Eur J Nucl Med Mol Imaging. 2019 Feb;46(2):489-500. doi: 10.1007/s00259-018-4214-x. Epub 2018 Nov 19.
9
Aligning physics and physiology: Engineering antibodies for radionuclide delivery.
J Labelled Comp Radiopharm. 2018 Jul;61(9):693-714. doi: 10.1002/jlcr.3622. Epub 2018 May 15.
10
On-demand generation and mixing of liquid-in-gas slugs with digitally-programmable composition and size.
J Micromech Microeng. 2015 Aug;25(8). doi: 10.1088/0960-1317/25/8/084006. Epub 2015 Jul 22.

本文引用的文献

2
Microfluidic device for robust generation of two-component liquid-in-air slugs with individually controlled composition.
Microfluid Nanofluidics. 2010 Oct;9(4-5):933-943. doi: 10.1007/s10404-010-0617-0. Epub 2010 Apr 22.
3
Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications.
Chem Soc Rev. 2010 Mar;39(3):1153-82. doi: 10.1039/b820557b. Epub 2010 Jan 25.
4
Hybrid microfluidics: a digital-to-channel interface for in-line sample processing and chemical separations.
Lab Chip. 2009 Apr 21;9(8):1046-51. doi: 10.1039/b820682a. Epub 2009 Feb 18.
5
An in vitro microfluidic approach to generating protein-interaction networks.
Nat Methods. 2009 Jan;6(1):71-4. doi: 10.1038/nmeth.1289. Epub 2008 Dec 21.
6
Humanized radioiodinated minibody for imaging of prostate stem cell antigen-expressing tumors.
Clin Cancer Res. 2008 Nov 15;14(22):7488-96. doi: 10.1158/1078-0432.CCR-07-5093.
7
Engineered humanized diabodies for microPET imaging of prostate stem cell antigen-expressing tumors.
Protein Eng Des Sel. 2009 Mar;22(3):209-16. doi: 10.1093/protein/gzn055. Epub 2008 Oct 28.
8
Automated on-chip rapid microscopy, phenotyping and sorting of C. elegans.
Nat Methods. 2008 Jul;5(7):637-43. doi: 10.1038/nmeth.1227. Epub 2008 Jun 22.
9
Droplet microfluidics.
Lab Chip. 2008 Feb;8(2):198-220. doi: 10.1039/b715524g. Epub 2008 Jan 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验