HSG-IMIT-Institut für Mikro- und Informationstechnik, Wilhelm-Schickard-Strasse 10, 78052 Villingen-Schwenningen, Germany.
Chem Soc Rev. 2010 Mar;39(3):1153-82. doi: 10.1039/b820557b. Epub 2010 Jan 25.
This critical review summarizes developments in microfluidic platforms that enable the miniaturization, integration, automation and parallelization of (bio-)chemical assays (see S. Haeberle and R. Zengerle, Lab Chip, 2007, 7, 1094-1110, for an earlier review). In contrast to isolated application-specific solutions, a microfluidic platform provides a set of fluidic unit operations, which are designed for easy combination within a well-defined fabrication technology. This allows the easy, fast, and cost-efficient implementation of different application-specific (bio-)chemical processes. In our review we focus on recent developments from the last decade (2000s). We start with a brief introduction into technical advances, major market segments and promising applications. We continue with a detailed characterization of different microfluidic platforms, comprising a short definition, the functional principle, microfluidic unit operations, application examples as well as strengths and limitations of every platform. The microfluidic platforms in focus are lateral flow tests, linear actuated devices, pressure driven laminar flow, microfluidic large scale integration, segmented flow microfluidics, centrifugal microfluidics, electrokinetics, electrowetting, surface acoustic waves, and dedicated systems for massively parallel analysis. This review concludes with the attempt to provide a selection scheme for microfluidic platforms which is based on their characteristics according to key requirements of different applications and market segments. Applied selection criteria comprise portability, costs of instrument and disposability, sample throughput, number of parameters per sample, reagent consumption, precision, diversity of microfluidic unit operations and the flexibility in programming different liquid handling protocols (295 references).
这篇综述总结了微流控平台在(生物)化学分析方面的小型化、集成化、自动化和并行化方面的进展(更早的综述见 S. Haeberle 和 R. Zengerle, Lab Chip, 2007, 7, 1094-1110)。与孤立的特定应用解决方案不同,微流控平台提供了一组流体操作单元,这些单元设计用于在明确定义的制造技术中轻松组合。这使得不同特定应用(生物)化学过程的实现变得简单、快速且具有成本效益。在我们的综述中,我们重点介绍了过去十年(2000 年代)的最新进展。我们首先简要介绍了技术进步、主要市场领域和有前途的应用。然后,我们详细描述了不同的微流控平台,包括简短定义、功能原理、微流体操作单元、应用示例以及每种平台的优缺点。我们关注的微流控平台包括横向流动测试、线性驱动装置、压力驱动层流、微流控大规模集成、分段流动微流控、离心微流控、电动动力学、电润湿、表面声波以及用于大规模并行分析的专用系统。本综述最后尝试根据不同应用和市场领域的关键要求,根据其特性为微流控平台提供一种选择方案。应用的选择标准包括便携性、仪器和一次性使用成本、样品通量、每个样品的参数数量、试剂消耗、精度、微流控操作单元的多样性以及不同液体处理协议的编程灵活性(295 篇参考文献)。