Suppr超能文献

用基于压缩二氧化碳的混合物去除金属生物材料中的内毒素。

Removing Endotoxin from Metallic Biomaterials with Compressed Carbon Dioxide-Based Mixtures.

作者信息

Tarafa Pedro J, Williams Eve, Panvelker Samir, Zhang Jian, Matthews Michael A

机构信息

Department of Engineering Sciences and Materials, University of Puerto Rico, Mayagüez PR 00681 USA.

出版信息

J Supercrit Fluids. 2011 Jan 1;55(3):1052-1058. doi: 10.1016/j.supflu.2010.09.010.

Abstract

Bacterial endotoxins have strong affinity for metallic biomaterials because of surface energy effects. Conventional depyrogenation methods may not eradicate endotoxins and may compromise biological properties and functionality of metallic instruments and implants. We evaluated the solubilization and removal of E. coli endotoxin from smooth and porous titanium (Ti) surfaces and stainless steel lumens using compressed CO(2)-based mixtures having water and/or surfactant Ls-54. The CO(2)/water/Ls-54 ternary mixture in the liquid CO(2) region (25 °C and 27.6 MPa) with strong mixing removed endotoxin below detection levels. This suggests that the ternary mixture penetrates and dissolves endotoxins from all the tested substrates. The successful removal of endotoxins from metallic biomaterials with compressed CO(2) is a promising cleaning technology for biomaterials and reusable medical devices.

摘要

由于表面能效应,细菌内毒素对金属生物材料具有很强的亲和力。传统的除热原方法可能无法根除内毒素,并且可能会损害金属器械和植入物的生物学特性和功能。我们使用含有水和/或表面活性剂Ls-54的基于压缩CO₂的混合物,评估了从光滑和多孔钛(Ti)表面以及不锈钢内腔中溶解和去除大肠杆菌内毒素的情况。处于液态CO₂区域(25°C和27.6MPa)且具有强烈混合作用的CO₂/水/Ls-54三元混合物将内毒素去除至检测水平以下。这表明该三元混合物能够渗透并溶解所有测试底物中的内毒素。用压缩CO₂成功去除金属生物材料中的内毒素,对于生物材料和可重复使用的医疗器械来说是一种很有前景的清洁技术。

相似文献

1
Removing Endotoxin from Metallic Biomaterials with Compressed Carbon Dioxide-Based Mixtures.
J Supercrit Fluids. 2011 Jan 1;55(3):1052-1058. doi: 10.1016/j.supflu.2010.09.010.
2
Protein-associated water and secondary structure effect removal of blood proteins from metallic substrates.
Langmuir. 2011 Mar 1;27(5):1830-6. doi: 10.1021/la1041794. Epub 2010 Dec 23.
3
The use of ultrasound for cleaning the surface of stainless steel and nickel-titanium endodontic instruments.
Int Endod J. 2001 Dec;34(8):581-5. doi: 10.1046/j.1365-2591.2001.00430.x.
4
Is galvanic corrosion between titanium alloy and stainless steel spinal implants a clinical concern?
Spine J. 2004 Jul-Aug;4(4):379-87. doi: 10.1016/j.spinee.2003.12.004.
5
Endotoxins-the invisible companion in biomaterials research.
Tissue Eng Part B Rev. 2013 Oct;19(5):391-402. doi: 10.1089/ten.TEB.2012.0636. Epub 2013 Mar 1.
6
Amorphous TiOnano-coating on stainless steel to improve its biological response.
Biomed Mater. 2024 Aug 21;19(5):055037. doi: 10.1088/1748-605X/ad6dc4.
8
New quantitative image analysis of staphylococcal biofilms on the surfaces of nontranslucent metallic biomaterials.
J Orthop Sci. 2007 Mar;12(2):178-84. doi: 10.1007/s00776-006-1102-1. Epub 2007 Mar 30.
9
Effect of Tris-acetate buffer on endotoxin removal from human-like collagen used biomaterials.
Mater Sci Eng C Mater Biol Appl. 2014 Sep;42:124-9. doi: 10.1016/j.msec.2014.05.015. Epub 2014 May 20.
10
Inactivation of Escherichia coli endotoxin by soft hydrothermal processing.
Appl Environ Microbiol. 2009 Aug;75(15):5058-63. doi: 10.1128/AEM.00122-09. Epub 2009 Jun 5.

引用本文的文献

1
Affinity and Inactivation of Bacterial Endotoxins for Medical Device Materials.
Biomed Instrum Technol. 2023;57(4):153-162. doi: 10.2345/0899-8205-57.4.153. Epub 2024 Jan 3.
2
Bioinks Enriched with ECM Components Obtained by Supercritical Extraction.
Biomolecules. 2022 Mar 2;12(3):394. doi: 10.3390/biom12030394.
3
and Analyses of the Effects of Source, Length, and Charge on the Cytotoxicity and Immunocompatibility of Cellulose Nanocrystals.
ACS Biomater Sci Eng. 2021 Apr 12;7(4):1450-1461. doi: 10.1021/acsbiomaterials.0c01618. Epub 2021 Mar 9.
4
Effectiveness of implant surface debridement using particle beams at differing air pressures.
Clin Exp Dent Res. 2017 Aug 2;3(4):148-153. doi: 10.1002/cre2.74. eCollection 2017 Aug.

本文引用的文献

1
Morphology and stability of CO2-in-water foams with nonionic hydrocarbon surfactants.
Langmuir. 2010 Apr 20;26(8):5335-48. doi: 10.1021/la903663v.
3
Self-assembly of phosphate fluorosurfactants in carbon dioxide.
Langmuir. 2004 Feb 17;20(4):1065-72. doi: 10.1021/la034742s.
4
Resorbable defect analog PLGA scaffolds using CO2 as solvent: structural characterization.
J Biomed Mater Res. 2002 Oct;62(1):89-98. doi: 10.1002/jbm.10212.
5
Formation of water-in-CO(2) microemulsions with non-fluorous surfactant Ls-54 and solubilization of biomacromolecules.
Chemistry. 2002 Mar 15;8(6):1356-60. doi: 10.1002/1521-3765(20020315)8:6<1356::aid-chem1356>3.0.co;2-n.
6
Water: From Clusters to the Bulk.
Angew Chem Int Ed Engl. 2001 May 18;40(10):1808-1827.
7
Endotoxin removal from protein solutions.
J Biotechnol. 2000 Jan 21;76(2-3):97-119. doi: 10.1016/s0168-1656(99)00185-6.
8
Measurement and removal of adherent endotoxin from titanium particles and implant surfaces.
J Orthop Res. 1999 Nov;17(6):803-9. doi: 10.1002/jor.1100170603.
9
Lipopolysaccharide affinity for titanium implant biomaterials.
J Prosthet Dent. 1997 Jan;77(1):76-82. doi: 10.1016/s0022-3913(97)70210-5.
10
Detection of endotoxin on sterile catheters used for cardiac catheterization.
J Clin Microbiol. 1980 Mar;11(3):209-12. doi: 10.1128/jcm.11.3.209-212.1980.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验