Lachos Victor H, Bandyopadhyay Dipankar, Dey Dipak K
Department of Statistics, Universidade Estadual de Campinas, Campinas, Sao Paulo 6065, Brazil.
Biometrics. 2011 Dec;67(4):1594-604. doi: 10.1111/j.1541-0420.2011.01586.x. Epub 2011 Apr 19.
HIV RNA viral load measures are often subjected to some upper and lower detection limits depending on the quantification assays. Hence, the responses are either left or right censored. Linear (and nonlinear) mixed-effects models (with modifications to accommodate censoring) are routinely used to analyze this type of data and are based on normality assumptions for the random terms. However, those analyses might not provide robust inference when the normality assumptions are questionable. In this article, we develop a Bayesian framework for censored linear (and nonlinear) models replacing the Gaussian assumptions for the random terms with normal/independent (NI) distributions. The NI is an attractive class of symmetric heavy-tailed densities that includes the normal, Student's-t, slash, and the contaminated normal distributions as special cases. The marginal likelihood is tractable (using approximations for nonlinear models) and can be used to develop Bayesian case-deletion influence diagnostics based on the Kullback-Leibler divergence. The newly developed procedures are illustrated with two HIV AIDS studies on viral loads that were initially analyzed using normal (censored) mixed-effects models, as well as simulations.
根据定量检测方法的不同,HIV RNA病毒载量检测通常会受到一些上限和下限的检测限制。因此,响应数据要么是左删失的,要么是右删失的。线性(和非线性)混合效应模型(经过修改以适应删失情况)通常用于分析这类数据,并且基于随机项的正态性假设。然而,当正态性假设存在疑问时,这些分析可能无法提供可靠的推断。在本文中,我们为删失线性(和非线性)模型开发了一个贝叶斯框架,用正态/独立(NI)分布取代随机项的高斯假设。NI是一类具有吸引力的对称重尾密度函数,包括正态分布、学生t分布、斜线分布和污染正态分布等特殊情况。边际似然是易于处理的(对于非线性模型使用近似方法),并且可用于基于库尔贝克-莱布勒散度开发贝叶斯案例删除影响诊断。新开发的程序通过两项关于病毒载量的HIV艾滋病研究以及模拟进行了说明,这两项研究最初使用正态(删失)混合效应模型进行了分析。