Suppr超能文献

使用三维三阶电子光谱法提取 Fenna-Matthews-Olson 复合物的激子哈密顿量。

Extracting the excitonic Hamiltonian of the Fenna-Matthews-Olson complex using three-dimensional third-order electronic spectroscopy.

机构信息

Department of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois, USA.

出版信息

Biophys J. 2011 Apr 20;100(8):2043-52. doi: 10.1016/j.bpj.2010.12.3747.

Abstract

We extend traditional two-dimensional (2D) electronic spectroscopy into a third Fourier dimension without the use of additional optical interactions. By acquiring a set of 2D spectra evenly spaced in waiting time and dividing the area of the spectra into voxels, we can eliminate population dynamics from the data and transform the waiting time dimension into frequency space. The resultant 3D spectrum resolves quantum beating signals arising from excitonic coherences along the waiting frequency dimension, thereby yielding up to 2n-fold redundancy in the set of frequencies necessary to construct a complete set of n excitonic transition energies. Using this technique, we have obtained, to our knowledge, the first fully experimental set of electronic eigenstates for the Fenna-Matthews-Olson (FMO) antenna complex, which can be used to improve theoretical simulations of energy transfer within this protein. Whereas the strong diagonal peaks in the 2D rephasing spectrum of the FMO complex obscure all but one of the crosspeaks at 77 K, extending into the third dimension resolves 19 individual peaks. Analysis of the independently collected nonrephasing data provides the same information, thereby verifying the calculated excitonic transition energies. These results enable one to calculate the Hamiltonian of the FMO complex in the site basis by fitting to the experimental linear absorption spectrum.

摘要

我们将传统的二维(2D)电子光谱扩展到第三个傅里叶维度,而无需使用额外的光学相互作用。通过获取一组在等待时间上均匀间隔的 2D 光谱,并将光谱的面积划分为体素,我们可以从数据中消除种群动力学,并将等待时间维度转换为频率空间。所得的 3D 光谱解析了来自激子相干的量子拍频信号,沿着等待频率维度,从而在构建完整的 n 个激子跃迁能量集所需的频率集合中提供多达 2n 倍的冗余。使用这种技术,我们获得了迄今为止第一个 Fenna-Matthews-Olson(FMO)天线复合物的电子本征态的完整实验数据集,可用于改进该蛋白质内能量转移的理论模拟。虽然 FMO 复合物的 2D 重相位光谱中的强对角峰掩盖了 77 K 时所有除一个交叉峰之外的所有交叉峰,但扩展到第三个维度可解析 19 个单独的峰。对独立收集的非重相位数据的分析提供了相同的信息,从而验证了计算出的激子跃迁能量。这些结果使得可以通过拟合实验线性吸收光谱来计算 FMO 复合物在站点基础上的哈密顿量。

相似文献

3
Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems.
Nature. 2007 Apr 12;446(7137):782-6. doi: 10.1038/nature05678.
4
Simulated two-dimensional electronic spectroscopy of the eight-bacteriochlorophyll FMO complex.
J Chem Phys. 2014 Dec 21;141(23):234105. doi: 10.1063/1.4903546.
5
Predictive First-Principles Modeling of a Photosynthetic Antenna Protein: The Fenna-Matthews-Olson Complex.
J Phys Chem Lett. 2020 Mar 5;11(5):1636-1643. doi: 10.1021/acs.jpclett.9b03486. Epub 2020 Feb 14.
6
8
From atomistic modeling to excitation transfer and two-dimensional spectra of the FMO light-harvesting complex.
J Phys Chem B. 2011 Jul 7;115(26):8609-21. doi: 10.1021/jp202619a. Epub 2011 Jun 14.
9
Peak shape analysis of diagonal and off-diagonal features in the two-dimensional electronic spectra of the Fenna-Matthews-Olson complex.
Philos Trans A Math Phys Eng Sci. 2012 Aug 13;370(1972):3692-708. doi: 10.1098/rsta.2011.0201.

引用本文的文献

1
Single-scan acquisition of multiple multidimensional spectra.
Optica. 2019;6(6). doi: 10.1364/optica.6.000735.
5
Rapid multiple-quantum three-dimensional fluorescence spectroscopy disentangles quantum pathways.
Nat Commun. 2019 Oct 18;10(1):4735. doi: 10.1038/s41467-019-12602-x.
6
Quantum transport in the FMO photosynthetic light-harvesting complex.
J Biol Phys. 2017 Jun;43(2):239-245. doi: 10.1007/s10867-017-9449-4. Epub 2017 Apr 4.
8
Multidimensional spectroscopy of photoreactivity.
Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):4764-9. doi: 10.1073/pnas.1323792111. Epub 2014 Mar 17.
9
Chemical oxidation of the FMO antenna protein from Chlorobaculum tepidum.
Photosynth Res. 2013 Sep;116(1):11-9. doi: 10.1007/s11120-013-9878-2. Epub 2013 Jul 5.
10
Conformation of self-assembled porphyrin dimers in liposome vesicles by phase-modulation 2D fluorescence spectroscopy.
Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16521-6. doi: 10.1073/pnas.1017308108. Epub 2011 Sep 22.

本文引用的文献

1
Long-lived quantum coherence in photosynthetic complexes at physiological temperature.
Proc Natl Acad Sci U S A. 2010 Jul 20;107(29):12766-70. doi: 10.1073/pnas.1005484107. Epub 2010 Jul 6.
2
Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature.
Nature. 2010 Feb 4;463(7281):644-7. doi: 10.1038/nature08811.
3
Quantum coherence enabled determination of the energy landscape in light-harvesting complex II.
J Phys Chem B. 2009 Dec 24;113(51):16291-5. doi: 10.1021/jp908300c.
4
Three-dimensional electronic spectroscopy of excitons in GaAs quantum wells.
J Chem Phys. 2009 Oct 14;131(14):144510. doi: 10.1063/1.3245964.
5
Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature.
Proc Natl Acad Sci U S A. 2009 Oct 13;106(41):17255-60. doi: 10.1073/pnas.0908989106. Epub 2009 Oct 7.
6
Role of quantum coherence and environmental fluctuations in chromophoric energy transport.
J Phys Chem B. 2009 Jul 23;113(29):9942-7. doi: 10.1021/jp901724d.
7
Lindblad equations for strongly coupled populations and coherences in photosynthetic complexes.
J Chem Phys. 2009 May 28;130(20):204512. doi: 10.1063/1.3142485.
8
The structural basis for the difference in absorbance spectra for the FMO antenna protein from various green sulfur bacteria.
Photosynth Res. 2009 May;100(2):79-87. doi: 10.1007/s11120-009-9430-6. Epub 2009 May 13.
9
Membrane orientation of the FMO antenna protein from Chlorobaculum tepidum as determined by mass spectrometry-based footprinting.
Proc Natl Acad Sci U S A. 2009 Apr 14;106(15):6134-9. doi: 10.1073/pnas.0901691106. Epub 2009 Apr 1.
10
Environment-assisted quantum walks in photosynthetic energy transfer.
J Chem Phys. 2008 Nov 7;129(17):174106. doi: 10.1063/1.3002335.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验