Suppr超能文献

拉曼光谱在无创血糖测量中的特异性研究。

Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements.

机构信息

George R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, 02139, USA.

出版信息

Anal Bioanal Chem. 2011 Jul;400(9):2871-80. doi: 10.1007/s00216-011-5004-5. Epub 2011 Apr 21.

Abstract

Although several in vivo blood glucose measurement studies have been performed by different research groups using near-infrared (NIR) absorption and Raman spectroscopic techniques, prospective prediction has proven to be a challenging problem. An important issue in this case is the demonstration of causality of glucose concentration to the spectral information, especially as the intrinsic glucose signal is smaller compared with that of the other analytes in the blood-tissue matrix. Furthermore, time-dependent physiological processes make the relation between glucose concentration and spectral data more complex. In this article, chance correlations in Raman spectroscopy-based calibration model for glucose measurements are investigated for both in vitro (physical tissue models) and in vivo (animal model and human subject) cases. Different spurious glucose concentration profiles are assigned to the Raman spectra acquired from physical tissue models, where the glucose concentration is intentionally held constant. Analogous concentration profiles, in addition to the true concentration profile, are also assigned to the datasets acquired from an animal model during a glucose clamping study as well as a human subject during an oral glucose tolerance test. We demonstrate that the spurious concentration profile-based calibration models are unable to provide prospective predictions, in contrast to those based on actual concentration profiles, especially for the physical tissue models. We also show that chance correlations incorporated by the calibration models are significantly less in Raman as compared to NIR absorption spectroscopy, even for the in vivo studies. Finally, our results suggest that the incorporation of chance correlations for in vivo cases can be largely attributed to the uncontrolled physiological sources of variations. Such uncontrolled physiological variations could either be intrinsic to the subject or stem from changes in the measurement conditions.

摘要

尽管不同的研究小组已经使用近红外(NIR)吸收和拉曼光谱技术进行了多项体内血糖测量研究,但前瞻性预测已被证明是一个具有挑战性的问题。在这种情况下,一个重要的问题是证明葡萄糖浓度与光谱信息之间的因果关系,特别是因为与血液组织基质中的其他分析物相比,内在的葡萄糖信号较小。此外,时间相关的生理过程使葡萄糖浓度与光谱数据之间的关系更加复杂。本文研究了基于拉曼光谱的葡萄糖测量校准模型中的机会相关性,包括体外(物理组织模型)和体内(动物模型和人体)情况。不同的虚假葡萄糖浓度分布被分配给从物理组织模型获得的拉曼光谱,其中葡萄糖浓度被故意保持恒定。类似的浓度分布,除了真实的浓度分布外,还被分配给在葡萄糖钳夹研究中从动物模型以及在口服葡萄糖耐量测试中从人体获得的数据集。我们证明,基于虚假浓度分布的校准模型无法提供前瞻性预测,与基于实际浓度分布的模型相反,尤其是对于物理组织模型。我们还表明,即使对于体内研究,拉曼中的机会相关性也明显少于近红外吸收光谱。最后,我们的结果表明,体内情况中机会相关性的纳入在很大程度上可以归因于不受控制的生理变化源。这种不受控制的生理变化可能是受试者内在的,也可能是测量条件变化引起的。

相似文献

1
Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements.
Anal Bioanal Chem. 2011 Jul;400(9):2871-80. doi: 10.1007/s00216-011-5004-5. Epub 2011 Apr 21.
2
Noninvasive Monitoring of Blood Glucose with Raman Spectroscopy.
Acc Chem Res. 2017 Feb 21;50(2):264-272. doi: 10.1021/acs.accounts.6b00472. Epub 2017 Jan 10.
4
Effect of photobleaching on calibration model development in biological Raman spectroscopy.
J Biomed Opt. 2011 Jan-Feb;16(1):011004. doi: 10.1117/1.3520131.
6
Raman spectroscopy for noninvasive glucose measurements.
J Biomed Opt. 2005 May-Jun;10(3):031114. doi: 10.1117/1.1920212.
8
Feasibility of measuring blood glucose concentration by near-infrared Raman spectroscopy.
Spectrochim Acta A Mol Biomol Spectrosc. 1997 Feb;53A(2):287-92. doi: 10.1016/s1386-1425(96)01779-9.
9
Turbidity-corrected Raman spectroscopy for blood analyte detection.
Anal Chem. 2009 Jun 1;81(11):4233-40. doi: 10.1021/ac8025509.
10
Comparison of multivariate calibration models for glucose, urea, and lactate from near-infrared and Raman spectra.
Anal Bioanal Chem. 2007 Feb;387(3):879-88. doi: 10.1007/s00216-006-1047-4. Epub 2007 Jan 3.

引用本文的文献

1
Non-invasive glucose prediction and classification using NIR technology with machine learning.
Heliyon. 2024 Mar 28;10(7):e28720. doi: 10.1016/j.heliyon.2024.e28720. eCollection 2024 Apr 15.
2
Swept-source Raman spectroscopy of chemical and biological materials.
J Biomed Opt. 2024 Jun;29(Suppl 2):S22703. doi: 10.1117/1.JBO.29.S2.S22703. Epub 2024 Apr 3.
3
Blood glucose monitoring devices for type 1 diabetes: a journey from the food and drug administration approval to market availability.
Front Endocrinol (Lausanne). 2024 Mar 15;15:1352302. doi: 10.3389/fendo.2024.1352302. eCollection 2024.
4
Engineering vascularized skin-mimetic phantom for non-invasive Raman spectroscopy.
Sens Actuators B Chem. 2024 Apr 1;404. doi: 10.1016/j.snb.2023.135240. Epub 2023 Dec 28.
5
Accurate Post-Calibration Predictions for Noninvasive Glucose Measurements in People Using Confocal Raman Spectroscopy.
ACS Sens. 2023 Mar 24;8(3):1272-1279. doi: 10.1021/acssensors.2c02756. Epub 2023 Mar 6.
7
Noninvasive Blood and Tissue Analysis: Raman Spectroscopy, One Perspective for Monitoring of Glucose and Beyond.
J Diabetes Sci Technol. 2021 Jan;15(1):28-33. doi: 10.1177/1932296820964803. Epub 2020 Oct 21.
8
Tissue Phantoms for Biomedical Applications in Raman Spectroscopy: A Review.
Biomed Eng Comput Biol. 2020 Aug 19;11:1179597220948100. doi: 10.1177/1179597220948100. eCollection 2020.
9
Proof of Concept for a New Raman-Based Prototype for Noninvasive Glucose Monitoring.
J Diabetes Sci Technol. 2021 Jan;15(1):11-18. doi: 10.1177/1932296820947112. Epub 2020 Aug 12.
10
Direct observation of glucose fingerprint using in vivo Raman spectroscopy.
Sci Adv. 2020 Jan 24;6(4):eaay5206. doi: 10.1126/sciadv.aay5206. eCollection 2020 Jan.

本文引用的文献

2
Effect of photobleaching on calibration model development in biological Raman spectroscopy.
J Biomed Opt. 2011 Jan-Feb;16(1):011004. doi: 10.1117/1.3520131.
3
Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose.
Anal Chem. 2010 Dec 1;82(23):9719-26. doi: 10.1021/ac101754n. Epub 2010 Nov 4.
5
Turbidity-corrected Raman spectroscopy for blood analyte detection.
Anal Chem. 2009 Jun 1;81(11):4233-40. doi: 10.1021/ac8025509.
6
Multicomponent blood analysis by near-infrared Raman spectroscopy.
Appl Opt. 1999 May 1;38(13):2916-26. doi: 10.1364/ao.38.002916.
7
Blood analysis by Raman spectroscopy.
Opt Lett. 2002 Nov 15;27(22):2004-6. doi: 10.1364/ol.27.002004.
9
Raman spectroscopy for noninvasive glucose measurements.
J Biomed Opt. 2005 May-Jun;10(3):031114. doi: 10.1117/1.1920212.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验