Suppr超能文献

拉曼光谱无创血糖监测。

Noninvasive Monitoring of Blood Glucose with Raman Spectroscopy.

机构信息

Connecticut Children's Innovation Center, University of Connecticut Health , Farmington, Connecticut 06032, United States.

Department of Mechanical Engineering, Johns Hopkins University , Baltimore, Maryland 21218, United States.

出版信息

Acc Chem Res. 2017 Feb 21;50(2):264-272. doi: 10.1021/acs.accounts.6b00472. Epub 2017 Jan 10.

Abstract

The successful development of a noninvasive blood glucose sensor that can operate reliably over sustained periods of time has been a much sought after but elusive goal in diabetes management. Since diabetes has no well-established cure, control of elevated glucose levels is critical for avoiding severe secondary health complications in multiple organs including the retina, kidney and vasculature. While fingerstick testing continues to be the mainstay of blood glucose detection, advances in electrochemical sensing-based minimally invasive approaches have opened the door for alternate methods that would considerably improve the quality of life for people with diabetes. In the quest for better sensing approaches, optical technologies have surfaced as attractive candidates as researchers have sought to exploit the endogenous contrast of glucose, notably its absorption, scattering, and polarization properties. Vibrational spectroscopy, especially spontaneous Raman scattering, has exhibited substantial promise due to its exquisite molecular specificity and minimal interference of water in the spectral profiles acquired from the blood-tissue matrix. Yet, it has hitherto been challenging to leverage the Raman scattering signatures of glucose for prediction in all but the most basic studies and under the least demanding conditions. In this Account, we discuss the newly developed array of methodologies that address the key challenges in measuring blood glucose accurately using Raman spectroscopy and unlock new prospects for translation to sustained noninvasive measurements in people with diabetes. Owing to the weak intensity of spontaneous Raman scattering, recent research has focused on enhancement of signals from the blood constituents by designing novel excitation-collection geometries and tissue modulation methods while our attempts have led to the incorporation of nonimaging optical elements. Additionally, invoking mass transfer modeling into chemometric algorithms has not only addressed the physiological lag between the actual blood glucose and the measured interstitial fluid glucose values but also offered a powerful tool for predictive measurements of hypoglycemia. This framework has recently been extended to provide longitudinal tracking of glucose concentration without necessitating extensive a priori concentration information. These findings are advanced by the results of recent glucose tolerance studies in human subjects, which also hint at the need for designing nonlinear calibration models that can account for subject-to-subject variations in skin heterogeneity and hematocrit levels. Together, the emerging evidence underscores the promise of a blood withdrawal-free optical platform-featuring a combination of high-throughput Raman spectroscopic instrumentation and data analysis of subtle variations in spectral expression-for diabetes screening in the clinic and, ultimately, for personalized monitoring.

摘要

成功开发一种能够长时间可靠运行的无创血糖传感器,一直是糖尿病管理中一个备受追捧但难以实现的目标。由于糖尿病尚无既定的治愈方法,控制血糖水平对于避免视网膜、肾脏和血管等多个器官的严重继发健康并发症至关重要。虽然指尖采血检测仍然是血糖检测的主要方法,但基于电化学传感的微创方法的进步为替代方法开辟了道路,这些方法将极大地提高糖尿病患者的生活质量。在寻求更好的传感方法的过程中,光学技术作为有吸引力的候选技术脱颖而出,因为研究人员一直试图利用葡萄糖的内源性对比度,特别是其吸收、散射和偏振特性。振动光谱学,特别是自发拉曼散射,由于其出色的分子特异性和对从血液-组织基质中获得的光谱轮廓中水的最小干扰,显示出了很大的潜力。然而,迄今为止,利用葡萄糖的拉曼散射特征进行预测一直具有挑战性,除了最基本的研究外,在最不苛刻的条件下也难以实现。在本述评中,我们讨论了一系列新开发的方法,这些方法解决了使用拉曼光谱术准确测量血糖的关键挑战,并为在糖尿病患者中实现持续的无创测量开辟了新的前景。由于自发拉曼散射的强度较弱,最近的研究集中于通过设计新颖的激发-收集几何形状和组织调制方法来增强血液成分的信号,而我们的尝试导致了非成像光学元件的引入。此外,将质量传递建模纳入化学计量学算法不仅解决了实际血糖与测量的间质液血糖值之间的生理滞后问题,而且还为低血糖的预测测量提供了强大的工具。该框架最近已扩展到无需广泛的先验浓度信息即可提供葡萄糖浓度的纵向跟踪。这些发现得到了最近在人体葡萄糖耐量研究中的结果的推进,这些结果也暗示需要设计能够解释皮肤异质性和血细胞比容水平个体间差异的非线性校准模型。总的来说,这些新发现强调了一种无采血的光学平台的前景,该平台结合了高通量拉曼光谱仪器和对光谱表达细微变化的数据分析,可用于临床糖尿病筛查,最终用于个性化监测。

相似文献

1
Noninvasive Monitoring of Blood Glucose with Raman Spectroscopy.拉曼光谱无创血糖监测。
Acc Chem Res. 2017 Feb 21;50(2):264-272. doi: 10.1021/acs.accounts.6b00472. Epub 2017 Jan 10.

引用本文的文献

2
Design and Synthesis of Novel Di-Boronic Acid-Based Chemical Glucose Sensors.新型基于二硼酸的化学葡萄糖传感器的设计与合成
ACS Omega. 2025 Mar 11;10(11):10812-10825. doi: 10.1021/acsomega.4c06237. eCollection 2025 Mar 25.
7
Piezoelectric Peptide Nanotube Substrate Sensors Activated through Sound Wave Energy.通过声波能量激活的压电肽纳米管基底传感器
ACS Mater Lett. 2024 Apr 8;6(5):1863-1869. doi: 10.1021/acsmaterialslett.3c01613. eCollection 2024 May 6.
9
Correction for Extrinsic Background in Raman Hyperspectral Images.拉曼高光谱图像的外部背景校正。
Anal Chem. 2023 Aug 22;95(33):12298-12305. doi: 10.1021/acs.analchem.3c01406. Epub 2023 Aug 10.

本文引用的文献

5
In vivo blood glucose quantification using Raman spectroscopy.利用拉曼光谱进行体内血糖定量分析。
PLoS One. 2012;7(10):e48127. doi: 10.1371/journal.pone.0048127. Epub 2012 Oct 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验