Suppr超能文献

利用支持向量机为血糖的光谱监测开发稳健的校准模型。

Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose.

机构信息

Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

出版信息

Anal Chem. 2010 Dec 1;82(23):9719-26. doi: 10.1021/ac101754n. Epub 2010 Nov 4.

Abstract

Sample-to-sample variability has proven to be a major challenge in achieving calibration transfer in quantitative biological Raman spectroscopy. Multiple morphological and optical parameters, such as tissue absorption and scattering, physiological glucose dynamics and skin heterogeneity, vary significantly in a human population introducing nonanalyte specific features into the calibration model. In this paper, we show that fluctuations of such parameters in human subjects introduce curved (nonlinear) effects in the relationship between the concentrations of the analyte of interest and the mixture Raman spectra. To account for these curved effects, we propose the use of support vector machines (SVM) as a nonlinear regression method over conventional linear regression techniques such as partial least-squares (PLS). Using transcutaneous blood glucose detection as an example, we demonstrate that application of SVM enables a significant improvement (at least 30%) in cross-validation accuracy over PLS when measurements from multiple human volunteers are employed in the calibration set. Furthermore, using physical tissue models with randomized analyte concentrations and varying turbidities, we show that the fluctuations in turbidity alone causes curved effects which can only be adequately modeled using nonlinear regression techniques. The enhanced levels of accuracy obtained with the SVM based calibration models opens up avenues for prospective prediction in humans and thus for clinical translation of the technology.

摘要

样本间的可变性已被证明是实现定量生物拉曼光谱定标传递的主要挑战。在人类群体中,多种形态和光学参数(如组织吸收和散射、生理葡萄糖动态和皮肤异质性)变化很大,这会给校准模型引入非分析物特异性特征。在本文中,我们表明,人类受试者中此类参数的波动会在感兴趣的分析物浓度与混合物拉曼光谱之间的关系中引入弯曲(非线性)效应。为了考虑这些弯曲效应,我们提出使用支持向量机(SVM)作为非线性回归方法,而不是传统的线性回归技术,如偏最小二乘(PLS)。我们以经皮血糖检测为例,证明了在定标集中使用多个志愿者的测量值时,与 PLS 相比,SVM 的应用可将交叉验证精度提高至少 30%。此外,使用具有随机分析物浓度和不同浊度的物理组织模型,我们表明,仅浊度的波动就会引起弯曲效应,而这些效应只能通过非线性回归技术进行充分建模。基于 SVM 的校准模型所获得的精度提高水平为人类的前瞻性预测开辟了途径,从而为该技术的临床转化提供了可能。

相似文献

7
Noninvasive Monitoring of Blood Glucose with Raman Spectroscopy.拉曼光谱无创血糖监测。
Acc Chem Res. 2017 Feb 21;50(2):264-272. doi: 10.1021/acs.accounts.6b00472. Epub 2017 Jan 10.

引用本文的文献

4
Tissue Phantoms for Biomedical Applications in Raman Spectroscopy: A Review.用于拉曼光谱生物医学应用的组织体模:综述
Biomed Eng Comput Biol. 2020 Aug 19;11:1179597220948100. doi: 10.1177/1179597220948100. eCollection 2020.
10
Noninvasive Monitoring of Blood Glucose with Raman Spectroscopy.拉曼光谱无创血糖监测。
Acc Chem Res. 2017 Feb 21;50(2):264-272. doi: 10.1021/acs.accounts.6b00472. Epub 2017 Jan 10.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验