Suppr超能文献

原核生物中转录和翻译的随机序列级模型。

Stochastic sequence-level model of coupled transcription and translation in prokaryotes.

机构信息

Computational Systems Biology Research Group, Department of Signal Processing, Tampere University of Technology, FI-33101 Tampere, Finland.

出版信息

BMC Bioinformatics. 2011 Apr 26;12:121. doi: 10.1186/1471-2105-12-121.

Abstract

BACKGROUND

In prokaryotes, transcription and translation are dynamically coupled, as the latter starts before the former is complete. Also, from one transcript, several translation events occur in parallel. To study how events in transcription elongation affect translation elongation and fluctuations in protein levels, we propose a delayed stochastic model of prokaryotic transcription and translation at the nucleotide and codon level that includes the promoter open complex formation and alternative pathways to elongation, namely pausing, arrests, editing, pyrophosphorolysis, RNA polymerase traffic, and premature termination. Stepwise translation can start after the ribosome binding site is formed and accounts for variable codon translation rates, ribosome traffic, back-translocation, drop-off, and trans-translation.

RESULTS

First, we show that the model accurately matches measurements of sequence-dependent translation elongation dynamics. Next, we characterize the degree of coupling between fluctuations in RNA and protein levels, and its dependence on the rates of transcription and translation initiation. Finally, modeling sequence-specific transcriptional pauses, we find that these affect protein noise levels.

CONCLUSIONS

For parameter values within realistic intervals, transcription and translation are found to be tightly coupled in Escherichia coli, as the noise in protein levels is mostly determined by the underlying noise in RNA levels. Sequence-dependent events in transcription elongation, e.g. pauses, are found to cause tangible effects in the degree of fluctuations in protein levels.

摘要

背景

在原核生物中,转录和翻译是动态偶联的,因为后者在前者完成之前就开始了。此外,从一个转录本中,会同时发生几个翻译事件。为了研究转录延伸过程中的事件如何影响翻译延伸和蛋白质水平的波动,我们提出了一个基于核苷酸和密码子水平的原核转录和翻译的延迟随机模型,其中包括启动子开放复合物的形成和延伸的替代途径,即暂停、阻滞、编辑、焦磷酸解、RNA 聚合酶运输和过早终止。核糖体结合位点形成后,可以逐步开始翻译,这解释了可变的密码子翻译速率、核糖体运输、回溯、脱落和转译。

结果

首先,我们表明该模型准确地匹配了序列依赖性翻译延伸动力学的测量结果。其次,我们描述了 RNA 和蛋白质水平波动之间的耦合程度及其对转录和翻译起始速率的依赖性。最后,对序列特异性转录暂停进行建模,我们发现这些暂停会影响蛋白质噪声水平。

结论

对于在现实区间内的参数值,发现转录和翻译在大肠杆菌中紧密偶联,因为蛋白质水平的噪声主要由 RNA 水平的基础噪声决定。转录延伸过程中序列依赖性事件,如暂停,会对蛋白质水平波动的程度产生明显的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0404/3113936/017e41e6b34f/1471-2105-12-121-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验