Suppr超能文献

mRNA 降解和转录暂停对蛋白质表达噪声的影响。

Effects of mRNA Degradation and Site-Specific Transcriptional Pausing on Protein Expression Noise.

机构信息

Microbial Sciences Institute, West Haven, Connecticut; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut; Howard Hughes Medical Institute, New Haven, Connecticut.

Microbial Sciences Institute, West Haven, Connecticut; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut; Howard Hughes Medical Institute, New Haven, Connecticut; Department of Microbial Pathogenesis, Yale School of Medicine, Yale University, New Haven, Connecticut.

出版信息

Biophys J. 2018 Apr 10;114(7):1718-1729. doi: 10.1016/j.bpj.2018.02.010.

Abstract

Genetically identical cells exhibit diverse phenotypes even when experiencing the same environment. This phenomenon in part originates from cell-to-cell variability (noise) in protein expression. Although various kinetic schemes of stochastic transcription initiation are known to affect gene expression noise, how posttranscription initiation events contribute to noise at the protein level remains incompletely understood. To address this question, we developed a stochastic simulation-based model of bacterial gene expression that integrates well-known dependencies between transcription initiation, transcription elongation dynamics, mRNA degradation, and translation. We identified realistic conditions under which mRNA lifetime and transcriptional pauses modulate the protein expression noise initially introduced by the promoter architecture. For instance, we found that the short lifetime of bacterial mRNAs facilitates the production of protein bursts. Conversely, RNA polymerase (RNAP) pausing at specific sites during transcription elongation can attenuate protein bursts by fluidizing the RNAP traffic to the point of erasing the effect of a bursty promoter. Pause-prone sites, if located close to the promoter, can also affect noise indirectly by reducing both transcription and translation initiation due to RNAP and ribosome congestion. Our findings highlight how the interplay between transcription initiation, transcription elongation, translation, and mRNA degradation shapes the distribution in protein numbers. They also have implications for our understanding of gene evolution and suggest combinatorial strategies for modulating phenotypic variability by genetic engineering.

摘要

即使在经历相同环境时,遗传上相同的细胞也会表现出不同的表型。这种现象部分源于蛋白质表达中的细胞间变异性(噪声)。尽管已知各种随机转录起始的动力学方案会影响基因表达噪声,但转录起始后事件如何影响蛋白质水平的噪声仍不完全清楚。为了解决这个问题,我们开发了一个基于随机模拟的细菌基因表达模型,该模型整合了转录起始、转录延伸动力学、mRNA 降解和翻译之间的已知依赖性。我们确定了在何种实际条件下,mRNA 寿命和转录暂停会调节最初由启动子结构引入的蛋白质表达噪声。例如,我们发现细菌 mRNA 的短寿命有助于产生蛋白质爆发。相反,RNA 聚合酶(RNAP)在转录延伸过程中在特定位置暂停,可以通过使 RNAP 流量流化来减弱蛋白质爆发,从而消除突发启动子的影响。如果暂停倾向的位点靠近启动子,也可以通过 RNAP 和核糖体拥塞导致转录和翻译起始减少,从而间接影响噪声。我们的研究结果强调了转录起始、转录延伸、翻译和 mRNA 降解之间的相互作用如何塑造蛋白质数量的分布。它们还对我们理解基因进化具有启示意义,并为通过基因工程调节表型可变性提供了组合策略。

相似文献

4
Effects of transcriptional pausing on gene expression dynamics.转录暂停对基因表达动力学的影响。
PLoS Comput Biol. 2010 Mar 12;6(3):e1000704. doi: 10.1371/journal.pcbi.1000704.
5
Different types of pausing modes during transcription initiation.转录起始过程中的不同类型暂停模式。
Transcription. 2017 Aug 8;8(4):242-253. doi: 10.1080/21541264.2017.1308853. Epub 2017 Mar 23.
6
Fluctuations, pauses, and backtracking in DNA transcription.DNA转录过程中的波动、停顿和回溯。
Biophys J. 2008 Jan 15;94(2):334-48. doi: 10.1529/biophysj.107.105767. Epub 2007 Aug 24.

引用本文的文献

3
Co-transcriptional gene regulation in eukaryotes and prokaryotes.真核生物和原核生物中的共转录基因调控。
Nat Rev Mol Cell Biol. 2024 Jul;25(7):534-554. doi: 10.1038/s41580-024-00706-2. Epub 2024 Mar 20.
4
Contributions of transcriptional noise to leukaemia evolution: KAT2A as a case-study.转录噪声对白血病进化的贡献:以KAT2A为例的研究
Philos Trans R Soc Lond B Biol Sci. 2024 Apr 22;379(1900):20230052. doi: 10.1098/rstb.2023.0052. Epub 2024 Mar 4.

本文引用的文献

2
Architecture of a transcribing-translating expressome.转录-翻译表达体的结构
Science. 2017 Apr 14;356(6334):194-197. doi: 10.1126/science.aal3059.
5
Stochastic Kinetics of Nascent RNA.新生RNA的随机动力学
Phys Rev Lett. 2016 Sep 16;117(12). doi: 10.1103/PhysRevLett.117.128101. Epub 2016 Sep 13.
6
Division of labour in microorganisms: an evolutionary perspective.微生物中的分工:进化视角。
Nat Rev Microbiol. 2016 Nov;14(11):716-723. doi: 10.1038/nrmicro.2016.111. Epub 2016 Sep 19.
7
RNA Polymerase Pausing during Initial Transcription.初始转录过程中的RNA聚合酶暂停
Mol Cell. 2016 Sep 15;63(6):939-50. doi: 10.1016/j.molcel.2016.08.011. Epub 2016 Sep 8.
8
Bacterial RNA polymerase can retain σ70 throughout transcription.细菌RNA聚合酶在整个转录过程中都能保留σ70。
Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):602-7. doi: 10.1073/pnas.1513899113. Epub 2016 Jan 5.
9
Deciphering Transcriptional Dynamics In Vivo by Counting Nascent RNA Molecules.通过计数新生RNA分子来解析体内转录动力学
PLoS Comput Biol. 2015 Nov 6;11(11):e1004345. doi: 10.1371/journal.pcbi.1004345. eCollection 2015 Nov.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验