Suppr超能文献

用于评估具有新颖非对称几何形状的微通道中单神经元和神经元/神经胶质对中极化轴突生长的生物芯片/激光细胞沉积系统。

Biochip∕laser cell deposition system to assess polarized axonal growth from single neurons and neuron∕glia pairs in microchannels with novel asymmetrical geometries.

出版信息

Biomicrofluidics. 2011 Mar 30;5(1):13408. doi: 10.1063/1.3552998.

Abstract

Axon path-finding plays an important role in normal and pathogenic brain development as well as in neurological regenerative medicine. In both scenarios, axonal growth is influenced by the microenvironment including the soluble molecules and contact-mediated signaling from guiding cells and cellular matrix. Microfluidic devices are a powerful tool for creating a microenvironment at the single cell level. In this paper, an asymmetrical-channel-based biochip, which can be later incorporated into microfluidic devices for neuronal network study, was developed to investigate geometric as well as supporting cell control of polarized axonal growth in forming a defined neuronal circuitry. A laser cell deposition system was used to place single cells, including neuron-glia pairs, into specific microwells of the device, enabling axonal growth without the influence of cytophilic∕phobic surface patterns. Phase microscopy showed that a novel "snag" channel structure influenced axonal growth in the intended direction 4:1 over the opposite direction. In heterotypic experiments, glial cell influence over the axonal growth path was observed with time-lapse microscopy. Thus, it is shown that single cell and heterotypic neuronal path-finding models can be developed in laser patterned biochips.

摘要

轴突寻路在正常和病理性脑发育以及神经再生医学中起着重要作用。在这两种情况下,轴突的生长都受到微环境的影响,包括来自指导细胞和细胞外基质的可溶性分子和接触介导的信号。微流控装置是在单细胞水平上创建微环境的有力工具。本文开发了一种基于非对称通道的生物芯片,可用于后续集成到微流控装置中,以研究几何形状和支持细胞对形成特定神经元回路的极化轴突生长的控制。激光细胞沉积系统用于将单个细胞(包括神经元-神经胶质对)放置在设备的特定微井中,从而实现无需细胞亲合力/疏水性表面图案影响的轴突生长。相差显微镜显示,新颖的“障碍”通道结构以 4:1 的比例影响了预期方向上的轴突生长,而不是相反方向。在异质型实验中,通过延时显微镜观察到神经胶质细胞对轴突生长路径的影响。因此,表明可以在激光图案化生物芯片中开发单细胞和异质型神经元寻路模型。

相似文献

9
Different cell surface areas of polarized radial glia having opposite effects on axonal outgrowth.
Eur J Neurosci. 1998 Mar;10(3):1000-10. doi: 10.1046/j.1460-9568.1998.00110.x.
10
Axonal growth-related cell surface molecule, neurin-1, involved in neuron-glia interaction.
J Neurosci Res. 1996 Sep 1;45(5):571-87. doi: 10.1002/(SICI)1097-4547(19960901)45:5<571::AID-JNR7>3.0.CO;2-9.

引用本文的文献

3
Microfluidic platforms for single neuron analysis.用于单神经元分析的微流控平台。
Mater Today Bio. 2022 Feb 16;13:100222. doi: 10.1016/j.mtbio.2022.100222. eCollection 2022 Jan.
6
Microfluidics-based laser cell-micropatterning system.基于微流控的激光细胞微图案化系统。
Biofabrication. 2014 Sep;6(3):035025. doi: 10.1088/1758-5082/6/3/035025.
9
New perspectives on neuronal development via microfluidic environments.通过微流控环境看神经元发育的新视角。
Trends Neurosci. 2012 Dec;35(12):752-61. doi: 10.1016/j.tins.2012.09.001. Epub 2012 Sep 29.

本文引用的文献

2
Laser-guided cell micropatterning system.激光引导细胞微图案化系统。
Rev Sci Instrum. 2011 Jan;82(1):013708. doi: 10.1063/1.3529919.
4
Human genetic disorders of axon guidance.人类轴突导向的遗传障碍。
Cold Spring Harb Perspect Biol. 2010 Mar;2(3):a001784. doi: 10.1101/cshperspect.a001784.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验