Centre for the Study of Neurological Disorders.
SFI FUTURE-NEURO Research Centre, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
J Neurosci. 2020 Jun 17;40(25):4798-4812. doi: 10.1523/JNEUROSCI.2067-19.2020. Epub 2020 May 11.
Mitochondrial clusters are found at regions of high-energy demand, allowing cells to meet local metabolic requirements while maintaining neuronal homeostasis. AMP-activated protein kinase (AMPK), a key energy stress sensor, responds to increases in AMP/ATP ratio by activating multiple signaling cascades to overcome the energetic deficiency. In many neurologic conditions, the distal axon experiences energetic stress independent of the soma. Here, we used microfluidic devices to physically isolate these two neuronal structures and to investigate whether localized AMPK signaling influenced axonal mitochondrial transport. Nucleofection of primary cortical neurons, derived from E16-18 mouse embryos (both sexes), with mito-GFP allowed monitoring of the transport dynamics of mitochondria within the axon, by confocal microscopy. Pharmacological activation of AMPK at the distal axon (0.1 mm 5-aminoimidazole-4-carboxamide riboside) induced a depression of the mean frequency, velocity, and distance of retrograde mitochondrial transport in the adjacent axon. Anterograde mitochondrial transport was less sensitive to local AMPK stimulus, with the imbalance of bidirectional mitochondrial transport resulting in accumulation of mitochondria at the region of energetic stress signal. Mitochondria in the axon-rich white matter of the brain rely heavily on lactate as a substrate for ATP synthesis. Interestingly, localized inhibition of lactate uptake (10 nm AR-C155858) reduced mitochondrial transport in the adjacent axon in all parameters measured, similar to that observed by 5-aminoimidazole-4-carboxamide riboside treatment. Coaddition of compound C restored all parameters measured to baseline levels, confirming the involvement of AMPK. This study highlights a role of AMPK signaling in the depression of axonal mitochondrial mobility during localized energetic stress. As the main providers of cellular energy, the dynamic transport of mitochondria within the neuron allows for clustering at regions of high-energy demand. Here we investigate whether acute changes in energetic stress signal in the spatially isolated axon would alter mitochondrial transport in this local region. Both direct and indirect activation of AMP-activated protein kinase isolated to the distal axon induced a rapid, marked depression in local mitochondrial transport. This work highlights the ability of acute localized AMP-activated protein kinase signaling to affect mitochondrial mobility within the axon, with important implications for white matter injury, axonal growth, and axonal degeneration.
线粒体簇存在于高能量需求的区域,使细胞能够满足局部代谢需求,同时保持神经元的内稳态。AMP 激活的蛋白激酶 (AMPK) 作为关键的能量应激传感器,通过激活多种信号级联反应来应对 AMP/ATP 比值的增加,以克服能量不足。在许多神经疾病中,远端轴突经历与胞体无关的能量应激。在这里,我们使用微流控设备物理隔离这两种神经元结构,并研究局部 AMPK 信号是否影响轴突线粒体运输。通过核转染 E16-18 天龄小鼠胚胎(雌雄皆有)来源的原代皮质神经元,并用 mito-GFP 可以通过共聚焦显微镜监测轴突内线粒体的运输动力学。在远端轴突(0.1mm 5-氨基咪唑-4-甲酰胺核苷)处药理学激活 AMPK 会导致相邻轴突中逆行线粒体运输的平均频率、速度和距离降低。顺行线粒体运输对局部 AMPK 刺激的敏感性较低,双向线粒体运输的不平衡导致线粒体在能量应激信号区域积聚。富含轴突的脑白质中的线粒体严重依赖于乳酸作为 ATP 合成的底物。有趣的是,局部抑制乳酸摄取(10nm AR-C155858)会降低相邻轴突中所有测量参数的线粒体运输,类似于 5-氨基咪唑-4-甲酰胺核苷处理的效果。同时添加化合物 C 可将所有测量参数恢复到基线水平,证实了 AMPK 的参与。这项研究强调了 AMPK 信号在局部能量应激期间抑制轴突线粒体流动性的作用。作为细胞能量的主要提供者,神经元内线粒体的动态运输允许在高能量需求区域聚集。在这里,我们研究了在空间上分离的轴突中急性能量应激信号的变化是否会改变该局部区域的线粒体运输。直接和间接激活位于远端轴突的 AMP 激活的蛋白激酶都会导致局部线粒体运输迅速而显著地降低。这项工作强调了急性局部 AMP 激活的蛋白激酶信号对轴突内线粒体流动性的影响能力,对脑白质损伤、轴突生长和轴突退化具有重要意义。