Parker Andrew S, Griswold Karl E, Bailey-Kellogg Chris
Department of Computer Science, Dartmouth College, Sudikoff Laboratory, Hanover, NH 03755, USA.
J Bioinform Comput Biol. 2011 Apr;9(2):207-29. doi: 10.1142/s0219720011005471.
Exogenous enzymes, signaling peptides, and other classes of nonhuman proteins represent a potentially massive but largely untapped pool of biotherapeutic agents. Adapting a foreign protein for therapeutic use poses numerous design challenges. We focus here on one significant problem: modifying the protein to mitigate the immune response mounted against "non-self" proteins, while not adversely affecting the protein's stability or therapeutic activity. In order to propose such variants suitable for experimental evaluation, this paper develops a computational method to select sets of mutations predicted to delete immunogenic T-cell epitopes, as evaluated by a 9-mer potential, while simultaneously maintaining important residues and residue interactions, as evaluated by one- and two-body potentials. While this design problem is NP-hard, we develop an integer programming approach that works very well in practice. We demonstrate the effectiveness of our approach by developing plans for biotherapeutic proteins that, in previous studies, have been partially deimmunized via extensive experimental characterization and modification of limited segments. In contrast, our global optimization technique considers an entire protein and accounts for all residues, residue interactions, and epitopes in proposing candidates worth subjecting to experimental evaluation.
外源性酶、信号肽和其他类别的非人类蛋白质代表了一个潜在的巨大但基本上未开发的生物治疗药物库。使外来蛋白质适用于治疗用途带来了众多设计挑战。我们在此关注一个重要问题:修饰蛋白质以减轻针对“非自身”蛋白质引发的免疫反应,同时又不对蛋白质的稳定性或治疗活性产生不利影响。为了提出适合实验评估的此类变体,本文开发了一种计算方法,用于选择预测可删除免疫原性T细胞表位的突变集,通过9聚体潜能进行评估,同时通过一体和二体潜能评估来维持重要残基和残基相互作用。虽然这个设计问题是NP难问题,但我们开发了一种在实践中效果很好的整数规划方法。我们通过为生物治疗蛋白质制定方案来证明我们方法的有效性,在之前的研究中,这些蛋白质已通过对有限片段进行广泛的实验表征和修饰而部分去免疫。相比之下,我们的全局优化技术考虑整个蛋白质,并在提出值得进行实验评估的候选物时考虑所有残基、残基相互作用和表位。