Suppr超能文献

EpiSweep:通过计算驱动对治疗性蛋白质进行重新设计,以降低免疫原性并保持功能。

EpiSweep: Computationally Driven Reengineering of Therapeutic Proteins to Reduce Immunogenicity While Maintaining Function.

作者信息

Choi Yoonjoo, Verma Deeptak, Griswold Karl E, Bailey-Kellogg Chris

机构信息

Department of Computer Science, Dartmouth, Hanover, NH, USA.

Thayer School of Engineering, Dartmouth, Hanover, NH, USA.

出版信息

Methods Mol Biol. 2017;1529:375-398. doi: 10.1007/978-1-4939-6637-0_20.

Abstract

Therapeutic proteins are yielding ever more advanced and efficacious new drugs, but the biological origins of these highly effective therapeutics render them subject to immune surveillance within the patient's body. When recognized by the immune system as a foreign agent, protein drugs elicit a coordinated response that can manifest a range of clinical complications including rapid drug clearance, loss of functionality and efficacy, delayed infusion-like allergic reactions, more serious anaphylactic shock, and even induced auto-immunity. It is thus often necessary to deimmunize an exogenous protein in order to enable its clinical application; critically, the deimmunization process must also maintain the desired therapeutic activity.To meet the growing need for effective, efficient, and broadly applicable protein deimmunization technologies, we have developed the EpiSweep suite of protein design algorithms. EpiSweep seamlessly integrates computational prediction of immunogenic T cell epitopes with sequence- or structure-based assessment of the impacts of mutations on protein stability and function, in order to select combinations of mutations that make Pareto optimal trade-offs between the competing goals of low immunogenicity and high-level function. The methods are applicable both to the design of individual functionally deimmunized variants as well as the design of combinatorial libraries enriched in functionally deimmunized variants. After validating EpiSweep in a series of retrospective case studies providing comparisons to conventional approaches to T cell epitope deletion, we have experimentally demonstrated it to be highly effective in prospective application to deimmunization of a number of different therapeutic candidates. We conclude that our broadly applicable computational protein design algorithms guide the engineer towards the most promising deimmunized therapeutic candidates, and thereby have the potential to accelerate development of new protein drugs by shortening time frames and improving hit rates.

摘要

治疗性蛋白质正在催生出越来越先进、有效的新药,但这些高效治疗药物的生物学来源使其在患者体内会受到免疫监测。当被免疫系统识别为外来物质时,蛋白质药物会引发一系列协同反应,可能表现出一系列临床并发症,包括药物快速清除、功能和疗效丧失、类似输液延迟的过敏反应、更严重的过敏性休克,甚至诱发自身免疫。因此,为了使其能够临床应用,通常有必要对一种外源蛋白质进行去免疫处理;关键的是,去免疫过程还必须保持所需的治疗活性。为了满足对有效、高效且广泛适用的蛋白质去免疫技术日益增长的需求,我们开发了EpiSweep蛋白质设计算法套件。EpiSweep将免疫原性T细胞表位的计算预测与基于序列或结构的突变对蛋白质稳定性和功能影响的评估无缝集成,以便选择在低免疫原性和高水平功能这两个相互竞争的目标之间做出帕累托最优权衡的突变组合。这些方法既适用于设计单个功能去免疫变体,也适用于设计富含功能去免疫变体的组合文库。在一系列回顾性案例研究中对EpiSweep进行验证并与传统的T细胞表位缺失方法进行比较后,我们通过实验证明它在对多种不同治疗候选物进行去免疫的前瞻性应用中非常有效。我们得出结论,我们广泛适用的计算蛋白质设计算法能引导工程师找到最有前景的去免疫治疗候选物,从而有可能通过缩短时间框架和提高命中率来加速新蛋白质药物的开发。

相似文献

2
Mapping the Pareto optimal design space for a functionally deimmunized biotherapeutic candidate.
PLoS Comput Biol. 2015 Jan 8;11(1):e1003988. doi: 10.1371/journal.pcbi.1003988. eCollection 2015 Jan.
3
Structure-guided deimmunization of therapeutic proteins.
J Comput Biol. 2013 Feb;20(2):152-65. doi: 10.1089/cmb.2012.0251.
4
Protein deimmunization via structure-based design enables efficient epitope deletion at high mutational loads.
Biotechnol Bioeng. 2015 Jul;112(7):1306-18. doi: 10.1002/bit.25554. Epub 2015 Feb 23.
5
Computationally driven deletion of broadly distributed T cell epitopes in a biotherapeutic candidate.
Cell Mol Life Sci. 2014 Dec;71(24):4869-80. doi: 10.1007/s00018-014-1652-x. Epub 2014 Jun 1.
6
Design and analysis of immune-evading enzymes for ADEPT therapy.
Protein Eng Des Sel. 2012 Oct;25(10):613-23. doi: 10.1093/protein/gzs044. Epub 2012 Aug 16.
7
Optimization algorithms for functional deimmunization of therapeutic proteins.
BMC Bioinformatics. 2010 Apr 9;11:180. doi: 10.1186/1471-2105-11-180.
8
Computationally optimized deimmunization libraries yield highly mutated enzymes with low immunogenicity and enhanced activity.
Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):E5085-E5093. doi: 10.1073/pnas.1621233114. Epub 2017 Jun 12.
9
Design and engineering of deimmunized biotherapeutics.
Curr Opin Struct Biol. 2016 Aug;39:79-88. doi: 10.1016/j.sbi.2016.06.003. Epub 2016 Jun 17.
10
OSPREY Predicts Resistance Mutations Using Positive and Negative Computational Protein Design.
Methods Mol Biol. 2017;1529:291-306. doi: 10.1007/978-1-4939-6637-0_15.

引用本文的文献

2
Assessing the predictive ability of computational epitope prediction methods on Fel d 1 and other allergens.
PLoS One. 2024 Aug 23;19(8):e0306254. doi: 10.1371/journal.pone.0306254. eCollection 2024.
4
Accelerating therapeutic protein design with computational approaches toward the clinical stage.
Comput Struct Biotechnol J. 2023 Apr 29;21:2909-2926. doi: 10.1016/j.csbj.2023.04.027. eCollection 2023.
5
How can we discover developable antibody-based biotherapeutics?
Front Mol Biosci. 2023 Aug 7;10:1221626. doi: 10.3389/fmolb.2023.1221626. eCollection 2023.
8
Design of peptides with high affinity binding to a monoclonal antibody as a basis for immunotherapy.
Peptides. 2021 Nov;145:170628. doi: 10.1016/j.peptides.2021.170628. Epub 2021 Aug 16.
10
MHCEpitopeEnergy, a Flexible Rosetta-Based Biotherapeutic Deimmunization Platform.
J Chem Inf Model. 2021 May 24;61(5):2368-2382. doi: 10.1021/acs.jcim.1c00056. Epub 2021 Apr 26.

本文引用的文献

1
Structure-based redesign of lysostaphin yields potent antistaphylococcal enzymes that evade immune cell surveillance.
Mol Ther Methods Clin Dev. 2015 Jun 17;2:15021. doi: 10.1038/mtm.2015.21. eCollection 2015.
3
Protein deimmunization via structure-based design enables efficient epitope deletion at high mutational loads.
Biotechnol Bioeng. 2015 Jul;112(7):1306-18. doi: 10.1002/bit.25554. Epub 2015 Feb 23.
4
Structure-based design of combinatorial mutagenesis libraries.
Protein Sci. 2015 May;24(5):895-908. doi: 10.1002/pro.2642. Epub 2015 Mar 2.
5
Mapping the Pareto optimal design space for a functionally deimmunized biotherapeutic candidate.
PLoS Comput Biol. 2015 Jan 8;11(1):e1003988. doi: 10.1371/journal.pcbi.1003988. eCollection 2015 Jan.
6
Computationally driven deletion of broadly distributed T cell epitopes in a biotherapeutic candidate.
Cell Mol Life Sci. 2014 Dec;71(24):4869-80. doi: 10.1007/s00018-014-1652-x. Epub 2014 Jun 1.
7
Removing T-cell epitopes with computational protein design.
Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8577-82. doi: 10.1073/pnas.1321126111. Epub 2014 May 19.
8
Recombinant immunotoxin for cancer treatment with low immunogenicity by identification and silencing of human T-cell epitopes.
Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8571-6. doi: 10.1073/pnas.1405153111. Epub 2014 May 5.
9
Gene and protein sequence optimization for high-level production of fully active and aglycosylated lysostaphin in Pichia pastoris.
Appl Environ Microbiol. 2014 May;80(9):2746-53. doi: 10.1128/AEM.03914-13. Epub 2014 Feb 21.
10
What's fueling the biotech engine-2012 to 2013.
Nat Biotechnol. 2014 Jan;32(1):32-9. doi: 10.1038/nbt.2794.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验