Thayer School of Engineering, Dartmouth College, Hanover, NH 03755.
Department of Computer Science, Dartmouth College, Hanover, NH 03755.
Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):E5085-E5093. doi: 10.1073/pnas.1621233114. Epub 2017 Jun 12.
Therapeutic proteins of wide-ranging function hold great promise for treating disease, but immune surveillance of these macromolecules can drive an antidrug immune response that compromises efficacy and even undermines safety. To eliminate widespread T-cell epitopes in any biotherapeutic and thereby mitigate this key source of detrimental immune recognition, we developed a Pareto optimal deimmunization library design algorithm that optimizes protein libraries to account for the simultaneous effects of combinations of mutations on both molecular function and epitope content. Active variants identified by high-throughput screening are thus inherently likely to be deimmunized. Functional screening of an optimized 10-site library (1,536 variants) of P99 β-lactamase (P99βL), a component of ADEPT cancer therapies, revealed that the population possessed high overall fitness, and comprehensive analysis of peptide-MHC II immunoreactivity showed the population possessed lower average immunogenic potential than the wild-type enzyme. Although similar functional screening of an optimized 30-site library (2.15 × 10 variants) revealed reduced population-wide fitness, numerous individual variants were found to have activity and stability better than the wild type despite bearing 13 or more deimmunizing mutations per enzyme. The immunogenic potential of one highly active and stable 14-mutation variant was assessed further using ex vivo cellular immunoassays, and the variant was found to silence T-cell activation in seven of the eight blood donors who responded strongly to wild-type P99βL. In summary, our multiobjective library-design process readily identified large and mutually compatible sets of epitope-deleting mutations and produced highly active but aggressively deimmunized constructs in only one round of library screening.
具有广泛功能的治疗性蛋白在治疗疾病方面具有很大的潜力,但这些大分子的免疫监视会引发抗药物免疫反应,从而降低疗效甚至危及安全性。为了消除任何生物治疗药物中的广泛 T 细胞表位,从而减轻这种有害免疫识别的主要来源,我们开发了一种帕累托最优的去免疫文库设计算法,该算法优化了蛋白质文库,以同时考虑突变对分子功能和表位含量的组合的影响。因此,通过高通量筛选鉴定的活性变体本质上很可能具有去免疫性。对 ADEPT 癌症治疗中成分的 P99 β-内酰胺酶 (P99βL) 的优化 10 位文库(1536 个变体)的功能筛选显示,该文库具有较高的总体适应性,对肽-MHC II 免疫反应的综合分析表明,该文库比野生型酶具有较低的平均免疫原性潜力。尽管对优化的 30 位文库(2.15×10 个变体)进行了类似的功能筛选,但发现群体适应性降低,但尽管每个酶带有 13 个或更多的去免疫突变,仍有许多个体变体的活性和稳定性优于野生型。使用体外细胞免疫测定法进一步评估了一种高活性和稳定的 14 突变变体的免疫原性潜力,发现该变体在对野生型 P99βL 反应强烈的 8 位献血者中的 7 位中沉默了 T 细胞激活。总之,我们的多目标文库设计过程可以轻松识别大量且相互兼容的表位缺失突变集,并在仅一轮文库筛选中产生高度活跃但积极去免疫的构建体。