Suppr超能文献

经计算优化的脱免疫文库可产生高度突变的酶,具有低免疫原性和增强的活性。

Computationally optimized deimmunization libraries yield highly mutated enzymes with low immunogenicity and enhanced activity.

机构信息

Thayer School of Engineering, Dartmouth College, Hanover, NH 03755.

Department of Computer Science, Dartmouth College, Hanover, NH 03755.

出版信息

Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):E5085-E5093. doi: 10.1073/pnas.1621233114. Epub 2017 Jun 12.

Abstract

Therapeutic proteins of wide-ranging function hold great promise for treating disease, but immune surveillance of these macromolecules can drive an antidrug immune response that compromises efficacy and even undermines safety. To eliminate widespread T-cell epitopes in any biotherapeutic and thereby mitigate this key source of detrimental immune recognition, we developed a Pareto optimal deimmunization library design algorithm that optimizes protein libraries to account for the simultaneous effects of combinations of mutations on both molecular function and epitope content. Active variants identified by high-throughput screening are thus inherently likely to be deimmunized. Functional screening of an optimized 10-site library (1,536 variants) of P99 β-lactamase (P99βL), a component of ADEPT cancer therapies, revealed that the population possessed high overall fitness, and comprehensive analysis of peptide-MHC II immunoreactivity showed the population possessed lower average immunogenic potential than the wild-type enzyme. Although similar functional screening of an optimized 30-site library (2.15 × 10 variants) revealed reduced population-wide fitness, numerous individual variants were found to have activity and stability better than the wild type despite bearing 13 or more deimmunizing mutations per enzyme. The immunogenic potential of one highly active and stable 14-mutation variant was assessed further using ex vivo cellular immunoassays, and the variant was found to silence T-cell activation in seven of the eight blood donors who responded strongly to wild-type P99βL. In summary, our multiobjective library-design process readily identified large and mutually compatible sets of epitope-deleting mutations and produced highly active but aggressively deimmunized constructs in only one round of library screening.

摘要

具有广泛功能的治疗性蛋白在治疗疾病方面具有很大的潜力,但这些大分子的免疫监视会引发抗药物免疫反应,从而降低疗效甚至危及安全性。为了消除任何生物治疗药物中的广泛 T 细胞表位,从而减轻这种有害免疫识别的主要来源,我们开发了一种帕累托最优的去免疫文库设计算法,该算法优化了蛋白质文库,以同时考虑突变对分子功能和表位含量的组合的影响。因此,通过高通量筛选鉴定的活性变体本质上很可能具有去免疫性。对 ADEPT 癌症治疗中成分的 P99 β-内酰胺酶 (P99βL) 的优化 10 位文库(1536 个变体)的功能筛选显示,该文库具有较高的总体适应性,对肽-MHC II 免疫反应的综合分析表明,该文库比野生型酶具有较低的平均免疫原性潜力。尽管对优化的 30 位文库(2.15×10 个变体)进行了类似的功能筛选,但发现群体适应性降低,但尽管每个酶带有 13 个或更多的去免疫突变,仍有许多个体变体的活性和稳定性优于野生型。使用体外细胞免疫测定法进一步评估了一种高活性和稳定的 14 突变变体的免疫原性潜力,发现该变体在对野生型 P99βL 反应强烈的 8 位献血者中的 7 位中沉默了 T 细胞激活。总之,我们的多目标文库设计过程可以轻松识别大量且相互兼容的表位缺失突变集,并在仅一轮文库筛选中产生高度活跃但积极去免疫的构建体。

相似文献

1
Computationally optimized deimmunization libraries yield highly mutated enzymes with low immunogenicity and enhanced activity.
Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):E5085-E5093. doi: 10.1073/pnas.1621233114. Epub 2017 Jun 12.
2
Computationally driven deletion of broadly distributed T cell epitopes in a biotherapeutic candidate.
Cell Mol Life Sci. 2014 Dec;71(24):4869-80. doi: 10.1007/s00018-014-1652-x. Epub 2014 Jun 1.
3
Design and analysis of immune-evading enzymes for ADEPT therapy.
Protein Eng Des Sel. 2012 Oct;25(10):613-23. doi: 10.1093/protein/gzs044. Epub 2012 Aug 16.
4
Protein deimmunization via structure-based design enables efficient epitope deletion at high mutational loads.
Biotechnol Bioeng. 2015 Jul;112(7):1306-18. doi: 10.1002/bit.25554. Epub 2015 Feb 23.
7
Structure-guided deimmunization of therapeutic proteins.
J Comput Biol. 2013 Feb;20(2):152-65. doi: 10.1089/cmb.2012.0251.
8
Mapping the Pareto optimal design space for a functionally deimmunized biotherapeutic candidate.
PLoS Comput Biol. 2015 Jan 8;11(1):e1003988. doi: 10.1371/journal.pcbi.1003988. eCollection 2015 Jan.
9
Optimization algorithms for functional deimmunization of therapeutic proteins.
BMC Bioinformatics. 2010 Apr 9;11:180. doi: 10.1186/1471-2105-11-180.
10
Pareto Optimization of Combinatorial Mutagenesis Libraries.
IEEE/ACM Trans Comput Biol Bioinform. 2019 Jul-Aug;16(4):1143-1153. doi: 10.1109/TCBB.2018.2858794. Epub 2018 Jul 23.

引用本文的文献

1
Machine learning for functional protein design.
Nat Biotechnol. 2024 Feb;42(2):216-228. doi: 10.1038/s41587-024-02127-0. Epub 2024 Feb 15.
3
Complementation Dependent Enzyme Prodrug Therapy Enables Targeted Activation of Prodrug on HER2-Positive Cancer Cells.
ACS Med Chem Lett. 2022 Oct 31;13(11):1769-1775. doi: 10.1021/acsmedchemlett.2c00394. eCollection 2022 Nov 10.
7
MHCEpitopeEnergy, a Flexible Rosetta-Based Biotherapeutic Deimmunization Platform.
J Chem Inf Model. 2021 May 24;61(5):2368-2382. doi: 10.1021/acs.jcim.1c00056. Epub 2021 Apr 26.
8
Deimmunization of protein therapeutics - Recent advances in experimental and computational epitope prediction and deletion.
Comput Struct Biotechnol J. 2020 Dec 29;19:315-329. doi: 10.1016/j.csbj.2020.12.024. eCollection 2021.

本文引用的文献

2
Design and engineering of deimmunized biotherapeutics.
Curr Opin Struct Biol. 2016 Aug;39:79-88. doi: 10.1016/j.sbi.2016.06.003. Epub 2016 Jun 17.
3
Algorithms for protein design.
Curr Opin Struct Biol. 2016 Aug;39:16-26. doi: 10.1016/j.sbi.2016.03.006. Epub 2016 Apr 14.
7
Protein deimmunization via structure-based design enables efficient epitope deletion at high mutational loads.
Biotechnol Bioeng. 2015 Jul;112(7):1306-18. doi: 10.1002/bit.25554. Epub 2015 Feb 23.
8
Structure-based design of combinatorial mutagenesis libraries.
Protein Sci. 2015 May;24(5):895-908. doi: 10.1002/pro.2642. Epub 2015 Mar 2.
9
Mapping the Pareto optimal design space for a functionally deimmunized biotherapeutic candidate.
PLoS Comput Biol. 2015 Jan 8;11(1):e1003988. doi: 10.1371/journal.pcbi.1003988. eCollection 2015 Jan.
10
Protein design algorithms predict viable resistance to an experimental antifolate.
Proc Natl Acad Sci U S A. 2015 Jan 20;112(3):749-54. doi: 10.1073/pnas.1411548112. Epub 2014 Dec 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验