Suppr超能文献

运用图论分析生物网络。

Using graph theory to analyze biological networks.

机构信息

Department of Computer Science and Biomedical Informatics, University of Central Greece, Lamia, 35100, Greece.

出版信息

BioData Min. 2011 Apr 28;4:10. doi: 10.1186/1756-0381-4-10.

Abstract

Understanding complex systems often requires a bottom-up analysis towards a systems biology approach. The need to investigate a system, not only as individual components but as a whole, emerges. This can be done by examining the elementary constituents individually and then how these are connected. The myriad components of a system and their interactions are best characterized as networks and they are mainly represented as graphs where thousands of nodes are connected with thousands of vertices. In this article we demonstrate approaches, models and methods from the graph theory universe and we discuss ways in which they can be used to reveal hidden properties and features of a network. This network profiling combined with knowledge extraction will help us to better understand the biological significance of the system.

摘要

理解复杂系统通常需要从系统生物学的角度进行自下而上的分析。需要调查一个系统,不仅要研究其各个组成部分,还要研究其整体。这可以通过单独检查基本组成部分,然后研究它们之间的连接来实现。系统的无数组成部分及其相互作用最好用网络来描述,它们主要用图来表示,其中数千个节点与数千个顶点相连。在本文中,我们展示了来自图论领域的方法、模型和方法,并讨论了如何利用它们来揭示网络的隐藏属性和特征。这种网络分析与知识提取相结合,将帮助我们更好地理解系统的生物学意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35fc/3101653/36794c767714/1756-0381-4-10-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验