Al-Hakeem Halah Fadhil Hussein, Khan Murtaza
Post-Graduate Institute for Accounting & Financial Studies, University of Baghdad, Baghdad, Iraq.
Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon, Republic of Korea.
Front Plant Sci. 2025 Jul 1;16:1597030. doi: 10.3389/fpls.2025.1597030. eCollection 2025.
Nitric oxide (NO), a key signaling molecule in plants, induces various biological and biochemical processes, including growth and development, adaptive responses, and signaling pathways. The intricate nature of NO dynamics requires vigorous statistical approaches to guarantee precise data interpretation and significant biological conclusions. This review underscores the importance of statistical methodologies in NO study, discussing experimental design, data collection, and advanced analytical tools. In addition, vital statistical challenges such as high variability in NO measurements, small sample sizes, and complex interactions with other signaling molecules, are investigated along with approaches to alleviate these limitations. New computational techniques, including machine learning, integrative omics approaches, and network-based systems biology, present commanding outlines for identifying NO-mediated regulatory mechanisms. Furthermore, we underscore the necessity for interdisciplinary collaboration, open science practices, and standardized protocols to improve the reproducibility and dependability of NO research. By combining robust statistical methods with advanced computational tools, researchers can gain enhanced insights into NO biology and its effects on plant adaptation and resilience.
一氧化氮(NO)是植物中的关键信号分子,可诱导各种生物和生化过程,包括生长发育、适应性反应和信号通路。NO动态的复杂性质需要强有力的统计方法来确保精确的数据解释和重要的生物学结论。本综述强调了统计方法在NO研究中的重要性,讨论了实验设计、数据收集和先进的分析工具。此外,还研究了诸如NO测量中的高变异性、小样本量以及与其他信号分子的复杂相互作用等重要统计挑战,以及缓解这些限制的方法。新的计算技术,包括机器学习、综合组学方法和基于网络的系统生物学,为识别NO介导的调控机制提供了重要框架。此外,我们强调跨学科合作、开放科学实践和标准化协议对于提高NO研究的可重复性和可靠性的必要性。通过将强大的统计方法与先进的计算工具相结合,研究人员可以更深入地了解NO生物学及其对植物适应性和恢复力的影响。