Suppr超能文献

研究中枢神经系统爆炸伤的新型模型。

Novel model to investigate blast injury in the central nervous system.

机构信息

Weldon School of Biomedical Engineering, Purdue University, 408 S. University Street, West Lafayette, IN 47906, USA.

出版信息

J Neurotrauma. 2011 Jul;28(7):1229-36. doi: 10.1089/neu.2011.1832. Epub 2011 Jun 30.

Abstract

Blast-induced neurotrauma (BINT) is a common injury modality associated with the current war efforts and increasing levels of terrorist activity. Exposure to the primary blast wave generated by explosive devices causes significant neurological deficits and is responsible for many of the war-related pathologies. Despite research efforts, the mechanism of injury is still poorly understood. To this end, we have established a novel ex vivo model for the direct observation and quantification of BINT at the tissue level. The model provides a quantifiable and reproducible method to illustrate the mechanism of BINT. Isolated sections of guinea pig spinal cord white matter were exposed to a supersonic shockwave using a blast generator with small-scaled explosives. The blast wave impact with isolated tissue was observed using focused shadowgraphy with a high-speed camera recording at 90,000 fps. Concurrently, functional deficits were measured by monitoring the production of compound action potentials using a double sucrose gap-recording chamber. Additionally, anatomical deficits were measured after blast exposure with a dye exclusion assay to visualize axonal membrane permeability. Our findings demonstrate that direct exposure to the blast wave compressed nervous tissue at a rate of 60 m/sec and led to significant functional deficits. Damage to the isolated spinal cord was marked by increased axonal permeability, suggesting rapid compression from the shockwave-generated high strain rates that resulted in membrane disruption. The model provides new insight into the mechanism of BINT and permits direct observation that may contribute to the development of appropriate treatment regimens.

摘要

爆炸所致神经创伤(Blast-induced neurotrauma,BINT)是一种常见的损伤方式,与当前的战争努力和不断增加的恐怖主义活动有关。暴露于爆炸装置产生的原发性爆炸波会导致严重的神经功能缺损,并导致许多与战争相关的病理学。尽管进行了研究,但损伤机制仍知之甚少。为此,我们建立了一种新的离体模型,用于在组织水平上直接观察和量化 BINT。该模型提供了一种可量化和可重复的方法来阐明 BINT 的机制。使用带有小尺度炸药的爆炸发生器使豚鼠脊髓白质的分离切片暴露于超声冲击波下。使用高速摄像机以 90,000 fps 的速度记录聚焦阴影摄影术观察到与分离组织的爆炸波冲击。同时,通过使用双蔗糖间隙记录室监测复合动作电位的产生来测量功能缺陷。此外,通过染料排除测定法在爆炸暴露后测量解剖缺陷,以可视化轴突膜通透性。我们的研究结果表明,直接暴露于爆炸波会以 60 m/sec 的速度压缩神经组织,并导致明显的功能缺陷。隔离脊髓的损伤标志着轴突通透性增加,表明冲击波产生的高应变速率导致膜破裂,从而导致快速压缩。该模型提供了对 BINT 机制的新见解,并允许直接观察,这可能有助于制定适当的治疗方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验