Suppr超能文献

弱点、 folly 与融合:使用最少训练对基于网络协作的统计标签融合技术的评估

Foibles, Follies, and Fusion: Assessment of Statistical Label Fusion Techniques for Web-Based Collaborations using Minimal Training.

作者信息

Asman Andrew J, Scoggins Andrew G, Prince Jerry L, Landman Bennett A

机构信息

Electrical Engineering, Vanderbilt University, Nashville, TN, USA 37235.

出版信息

Proc SPIE Int Soc Opt Eng. 2011;7962:79623G. doi: 10.1117/12.877471.

Abstract

Labeling or parcellation of structures of interest on magnetic resonance imaging (MRI) is essential in quantifying and characterizing correlation with numerous clinically relevant conditions. The use of statistical methods using automated methods or complete data sets from several different raters have been proposed to simultaneously estimate both rater reliability and true labels. An extension to these statistical based methodologies was proposed that allowed for missing labels, repeated labels and training trials. Herein, we present and demonstrate the viability of these statistical based methodologies using real world data contributed by minimally trained human raters. The consistency of the statistical estimates, the accuracy compared to the individual observations and the variability of both the estimates and the individual observations with respect to the number of labels are discussed. It is demonstrated that the Gaussian based statistical approach using the previously presented extensions successfully performs label fusion in a variety of contexts using data from online (Internet-based) collaborations among minimally trained raters. This first successful demonstration of a statistically based approach using "wild-type" data opens numerous possibilities for very large scale efforts in collaboration. Extension and generalization of these technologies for new application spaces will certainly present fascinating areas for continuing research.

摘要

在磁共振成像(MRI)上对感兴趣的结构进行标记或分割,对于量化和表征与众多临床相关病症的相关性至关重要。有人提出使用自动化方法或来自多个不同评分者的完整数据集的统计方法,来同时估计评分者的可靠性和真实标签。对这些基于统计的方法进行了扩展,使其能够处理缺失标签、重复标签和训练试验。在此,我们展示并论证了使用训练不足的人类评分者提供的真实世界数据的这些基于统计的方法的可行性。讨论了统计估计的一致性、与个体观察结果相比的准确性以及估计值和个体观察结果相对于标签数量的变异性。结果表明,使用先前提出的扩展的基于高斯的统计方法,利用来自训练不足的评分者在线(基于互联网)合作的数据,在各种情况下都能成功地进行标签融合。这种首次使用“野生型”数据成功展示的基于统计的方法,为大规模合作努力开辟了众多可能性。将这些技术扩展和推广到新的应用领域,无疑将为持续研究带来迷人的领域。

相似文献

2
Foibles, follies, and fusion: web-based collaboration for medical image labeling.
Neuroimage. 2012 Jan 2;59(1):530-9. doi: 10.1016/j.neuroimage.2011.07.085. Epub 2011 Aug 2.
3
Robust statistical fusion of image labels.
IEEE Trans Med Imaging. 2012 Feb;31(2):512-22. doi: 10.1109/TMI.2011.2172215. Epub 2011 Oct 14.
4
Self-assessed performance improves statistical fusion of image labels.
Med Phys. 2014 Mar;41(3):031903. doi: 10.1118/1.4864236.
5
Simultaneous Truth and Performance Level Estimation with Incomplete, Over-complete, and Ancillary Data.
Proc SPIE Int Soc Opt Eng. 2010 Mar 12;7623:76231N. doi: 10.1117/12.844182.
6
7
Robust statistical label fusion through COnsensus Level, Labeler Accuracy, and Truth Estimation (COLLATE).
IEEE Trans Med Imaging. 2011 Oct;30(10):1779-94. doi: 10.1109/TMI.2011.2147795. Epub 2011 Apr 29.
8
Statistical Fusion of Surface Labels Provided by Multiple Raters.
Proc SPIE Int Soc Opt Eng. 2010 Mar 1;7623. doi: 10.1117/12.844214.
10
Simultaneous Segmentation and Statistical Label Fusion.
Proc SPIE Int Soc Opt Eng. 2012 Feb 23;8314:83140Y-. doi: 10.1117/12.910794.

引用本文的文献

1
Self-assessed performance improves statistical fusion of image labels.
Med Phys. 2014 Mar;41(3):031903. doi: 10.1118/1.4864236.
2
Generalized Statistical Label Fusion using Multiple Consensus Levels.
Proc SPIE Int Soc Opt Eng. 2012 Feb 23;8314. doi: 10.1117/12.910918.
3
Formulating spatially varying performance in the statistical fusion framework.
IEEE Trans Med Imaging. 2012 Jun;31(6):1326-36. doi: 10.1109/TMI.2012.2190992. Epub 2012 Mar 15.
4
Robust statistical label fusion through COnsensus Level, Labeler Accuracy, and Truth Estimation (COLLATE).
IEEE Trans Med Imaging. 2011 Oct;30(10):1779-94. doi: 10.1109/TMI.2011.2147795. Epub 2011 Apr 29.

本文引用的文献

1
Statistical Fusion of Surface Labels Provided by Multiple Raters.
Proc SPIE Int Soc Opt Eng. 2010 Mar 1;7623. doi: 10.1117/12.844214.
2
Simultaneous Truth and Performance Level Estimation with Incomplete, Over-complete, and Ancillary Data.
Proc SPIE Int Soc Opt Eng. 2010 Mar 12;7623:76231N. doi: 10.1117/12.844182.
3
A framework for evaluating image segmentation algorithms.
Comput Med Imaging Graph. 2006 Mar;30(2):75-87. doi: 10.1016/j.compmedimag.2005.12.001.
4
Expectation maximization strategies for multi-atlas multi-label segmentation.
Inf Process Med Imaging. 2003 Jul;18:210-21. doi: 10.1007/978-3-540-45087-0_18.
6
Elastically deforming 3D atlas to match anatomical brain images.
J Comput Assist Tomogr. 1993 Mar-Apr;17(2):225-36. doi: 10.1097/00004728-199303000-00011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验