Suppr超能文献

用于 II 型核/壳量子点中超快速电荷分离和缓慢电荷复合的波函数工程。

Wave function engineering for ultrafast charge separation and slow charge recombination in type II core/shell quantum dots.

机构信息

Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA.

出版信息

J Am Chem Soc. 2011 Jun 8;133(22):8762-71. doi: 10.1021/ja202752s. Epub 2011 May 17.

Abstract

The size dependence of optical and electronic properties of semiconductor quantum dots (QDs) have been extensively studied in various applications ranging from solar energy conversion to biological imaging. Core/shell QDs allow further tuning of these properties by controlling the spatial distributions of the conduction-band electron and valence-band hole wave functions through the choice of the core/shell materials and their size/thickness. It is possible to engineer type II core/shell QDs, such as CdTe/CdSe, in which the lowest energy conduction-band electron is largely localized in the shell while the lowest energy valence-band hole is localized in the core. This spatial distribution enables ultrafast electron transfer to the surface-adsorbed electron acceptors due to enhanced electron density on the shell materials, while simultaneously retarding the charge recombination process because the shell acts as a tunneling barrier for the core localized hole. Using ultrafast transient absorption spectroscopy, we show that in CdTe/CdSe-anthraquinone (AQ) complexes, after the initial ultrafast (~770 fs) intra-QD electron transfer from the CdTe core to the CdSe shell, the shell-localized electron is transferred to the adsorbed AQ with a half-life of 2.7 ps. The subsequent charge recombination from the reduced acceptor, AQ(-), to the hole in the CdTe core has a half-life of 92 ns. Compared to CdSe-AQ complexes, the type II band alignment in CdTe/CdSe QDs maintains similar ultrafast charge separation while retarding the charge recombination by 100-fold. This unique ultrafast charge separation and slow recombination property, coupled with longer single and multiple exciton lifetimes in type II QDs, suggests that they are ideal light-harvesting materials for solar energy conversion.

摘要

半导体量子点(QD)的光学和电子性质的尺寸依赖性在从太阳能转换到生物成像等各种应用中得到了广泛研究。核/壳 QD 通过选择核/壳材料及其尺寸/厚度来控制导带电子和价带空穴波函数的空间分布,从而进一步调整这些性质。可以设计出 II 型核/壳 QD,例如 CdTe/CdSe,其中最低能量导带电子主要定域在壳层中,而最低能量价带空穴定域在核中。这种空间分布由于壳层材料上的电子密度增加,使得电子能够快速转移到表面吸附的电子受体,同时由于壳层作为核定域空穴的隧道势垒,从而延迟了电荷复合过程。通过超快瞬态吸收光谱,我们表明在 CdTe/CdSe-蒽醌(AQ)复合物中,在 CdTe 核到 CdSe 壳的初始超快(~770 fs)QD 内电子转移之后,壳层定域电子以 2.7 ps 的半衰期转移到吸附的 AQ。随后,来自还原受体 AQ(-)的电荷再结合到 CdTe 核中的空穴具有 92 ns 的半衰期。与 CdSe-AQ 复合物相比,CdTe/CdSe QD 中的 II 型能带排列在保持类似超快电荷分离的同时,将电荷复合延迟 100 倍。这种独特的超快电荷分离和缓慢的复合性质,再加上 II 型 QD 中单重和多重激子寿命更长,表明它们是太阳能转换的理想光收集材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验