Suppr超能文献

支支持方法的调查表明了快速基于似然的近似方案的准确性、功效和稳健性。

Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes.

机构信息

Department of Computer Science, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland.

出版信息

Syst Biol. 2011 Oct;60(5):685-99. doi: 10.1093/sysbio/syr041. Epub 2011 May 3.

Abstract

Phylogenetic inference and evaluating support for inferred relationships is at the core of many studies testing evolutionary hypotheses. Despite the popularity of nonparametric bootstrap frequencies and Bayesian posterior probabilities, the interpretation of these measures of tree branch support remains a source of discussion. Furthermore, both methods are computationally expensive and become prohibitive for large data sets. Recent fast approximate likelihood-based measures of branch supports (approximate likelihood ratio test [aLRT] and Shimodaira-Hasegawa [SH]-aLRT) provide a compelling alternative to these slower conventional methods, offering not only speed advantages but also excellent levels of accuracy and power. Here we propose an additional method: a Bayesian-like transformation of aLRT (aBayes). Considering both probabilistic and frequentist frameworks, we compare the performance of the three fast likelihood-based methods with the standard bootstrap (SBS), the Bayesian approach, and the recently introduced rapid bootstrap. Our simulations and real data analyses show that with moderate model violations, all tests are sufficiently accurate, but aLRT and aBayes offer the highest statistical power and are very fast. With severe model violations aLRT, aBayes and Bayesian posteriors can produce elevated false-positive rates. With data sets for which such violation can be detected, we recommend using SH-aLRT, the nonparametric version of aLRT based on a procedure similar to the Shimodaira-Hasegawa tree selection. In general, the SBS seems to be excessively conservative and is much slower than our approximate likelihood-based methods.

摘要

系统发育推断和评估推断关系的支持度是许多检验进化假说的研究的核心。尽管非参数引导频率和贝叶斯后验概率的使用非常普遍,但这些树分支支持度量的解释仍然是一个讨论的来源。此外,这两种方法的计算成本都很高,对于大型数据集来说变得非常昂贵。最近快速近似似然比分支支持度度量(近似似然比检验[aLRT]和岛津-长尾[aLRT])为这些较慢的传统方法提供了一个引人注目的替代方案,不仅提供了速度优势,而且具有出色的准确性和功效。在这里,我们提出了一种额外的方法:aLRT 的贝叶斯转换(aBayes)。考虑到概率和频率框架,我们比较了三种快速似然比方法与标准引导(SBS)、贝叶斯方法和最近引入的快速引导的性能。我们的模拟和真实数据分析表明,在适度的模型违反情况下,所有测试都足够准确,但 aLRT 和 aBayes 提供了最高的统计功效和非常高的速度。在存在严重模型违反的情况下,aLRT、aBayes 和贝叶斯后验概率可能会产生较高的假阳性率。对于可以检测到这种违反的数据集,我们建议使用 SH-aLRT,这是非参数版的 aLRT,基于类似于岛津-长尾树选择的过程。一般来说,SBS 似乎过于保守,而且比我们的近似似然比方法慢得多。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d80/3158332/73efdabd9757/sysbiosyr041f01_3c.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验