Suppr超能文献

使用可拉伸微电极阵列对脊髓表面进行选择性刺激。

Selective stimulation of the spinal cord surface using a stretchable microelectrode array.

作者信息

Meacham Kathleen Williams, Guo Liang, Deweerth Stephen P, Hochman Shawn

机构信息

The Laboratory for Neuroengineering, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology Atlanta, GA, USA.

出版信息

Front Neuroeng. 2011 Apr 21;4:5. doi: 10.3389/fneng.2011.00005. eCollection 2011.

Abstract

By electrically stimulating the spinal cord, it is possible to activate functional populations of neurons that modulate motor and sensory function. One method for accessing these neurons is via their associated axons, which project as functionally segregated longitudinal columns of white-matter funiculi (i.e., spinal tracts). To stimulate spinal tracts without penetrating the cord, we have recently developed technology that enables close-proximity, multi-electrode contact with the spinal cord surface. Our stretchable microelectrode arrays (sMEAs) are fabricated using an elastomer polydimethylsiloxane substrate and can be wrapped circumferentially around the spinal cord to optimize electrode contact. Here, sMEAs were used to stimulate the surfaces of rat spinal cords maintained in vitro, and their ability to selectively activate axonal surface tracts was compared to rigid bipolar tungsten microelectrodes pressed firmly onto the cord surface. Along dorsal column tracts, the axonal response to sMEA stimulation was compared to that evoked by rigid microelectrodes through measurement of their evoked axonal compound action potentials (CAPs). Paired t-tests failed to reveal significant differences between the sMEA's and the rigid microelectrode's stimulus resolution, or in their ranges of evoked CAP conduction velocities. Additionally, dual-site stimulation using sMEA electrodes recruited spatially distinct populations of spinal axons. Site-specific stimulation of the ventrolateral funiculus - a tract capable of evoking locomotor-like activity - recruited ventral root efferent activity that spanned several spinal segments. These findings indicate that the sMEA stimulates the spinal cord surface with selectivity similar to that of rigid microelectrodes, while possessing potential advantages concerning circumferential contact and mechanical compatibility with the cord surface.

摘要

通过电刺激脊髓,可以激活调节运动和感觉功能的功能性神经元群。一种接触这些神经元的方法是通过它们相关的轴突,这些轴突作为白质纤维束(即脊髓束)的功能分离的纵向柱投射。为了在不穿透脊髓的情况下刺激脊髓束,我们最近开发了一种技术,能够与脊髓表面进行近距离、多电极接触。我们的可拉伸微电极阵列(sMEA)是使用弹性体聚二甲基硅氧烷基板制造的,可以沿圆周方向包裹在脊髓周围,以优化电极接触。在这里,sMEA被用于刺激体外保存的大鼠脊髓表面,并将其选择性激活轴突表面束的能力与牢固压在脊髓表面的刚性双极钨微电极进行比较。沿着背柱束,通过测量它们诱发的轴突复合动作电位(CAP),将sMEA刺激的轴突反应与刚性微电极诱发的反应进行比较。配对t检验未能揭示sMEA和刚性微电极的刺激分辨率或它们诱发的CAP传导速度范围之间的显著差异。此外,使用sMEA电极进行双位点刺激招募了空间上不同的脊髓轴突群体。对腹外侧索进行位点特异性刺激——这是一种能够诱发类似运动活动的束——招募了跨越几个脊髓节段的腹根传出活动。这些发现表明,sMEA刺激脊髓表面的选择性与刚性微电极相似,同时在圆周接触和与脊髓表面的机械兼容性方面具有潜在优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e88b/3083715/813c52ebe88d/fneng-04-00005-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验