Suppr超能文献

枯草芽孢杆菌中一种依赖于σW 的应激反应,可降低膜流动性。

A σW-dependent stress response in Bacillus subtilis that reduces membrane fluidity.

机构信息

Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA.

出版信息

Mol Microbiol. 2011 Jul;81(1):69-79. doi: 10.1111/j.1365-2958.2011.07679.x. Epub 2011 Jun 9.

Abstract

Bacteria respond to physical and chemical stresses that affect the integrity of the cell wall and membrane by activating an intricate cell envelope stress response. The ability of cells to regulate the biophysical properties of the membrane by adjusting fatty acid composition is known as homeoviscous adaptation. Here, we identify a homeoviscous adaptation mechanism in Bacillus subtilis regulated by the extracytoplasmic function σ factor σ(W). Cell envelope active compounds, including detergents, activate a sense-oriented, σ(W)-dependent promoter within the first gene of the fabHa fabF operon. Activation leads to a decrease in the amount of FabHa coupled with an increase in FabF, the initiation and elongation condensing enzymes of fatty acid biosynthesis respectively. Downregulation of FabHa results in an increased reliance on the FabHb paralogue leading to a greater proportion of straight chain fatty acids in the membrane, and the upregulation of FabF increases the average fatty acid chain length. The net effect is to reduce membrane fluidity. The inactivation of the σ(W)-dependent promoter within fabHa increased sensitivity to detergents and to antimicrobial compounds produced by other Bacillus spp. Thus, the σ(W) stress response provides a mechanism to conditionally decrease membrane fluidity through the opposed regulation of FabHa and FabF.

摘要

细菌通过激活复杂的细胞包膜应激反应来应对影响细胞壁和膜完整性的物理和化学应激。细胞通过调节脂肪酸组成来调节膜的生物物理性质的能力被称为同型粘适应性。在这里,我们确定了枯草芽孢杆菌中由胞外功能 σ 因子 σ(W)调节的同型粘适应机制。细胞膜活性化合物,包括清洁剂,在 fabHa fabF 操纵子的第一个基因内激活定向的、σ(W)依赖性启动子。激活导致 FabHa 的量减少,同时 FabF 增加,FabF 分别是脂肪酸生物合成的起始和延伸缩合酶。FabHa 的下调导致对 FabHb 同源物的依赖性增加,导致膜中直链脂肪酸的比例增加,FabF 的上调增加了平均脂肪酸链长。其净效应是降低膜流动性。fabHa 内的 σ(W)依赖性启动子失活增加了对清洁剂和其他芽孢杆菌产生的抗菌化合物的敏感性。因此,σ(W)应激反应提供了一种通过相反调节 FabHa 和 FabF 来有条件降低膜流动性的机制。

相似文献

1
A σW-dependent stress response in Bacillus subtilis that reduces membrane fluidity.
Mol Microbiol. 2011 Jul;81(1):69-79. doi: 10.1111/j.1365-2958.2011.07679.x. Epub 2011 Jun 9.
2
Bacillus subtilis extracytoplasmic function (ECF) sigma factors and defense of the cell envelope.
Curr Opin Microbiol. 2016 Apr;30:122-132. doi: 10.1016/j.mib.2016.02.002. Epub 2016 Feb 20.
4
Anti-sigma factor-mediated cell surface stress responses in Bacillus subtilis.
Genes Genet Syst. 2018 Apr 10;92(5):223-234. doi: 10.1266/ggs.17-00046. Epub 2018 Jan 17.
5
Contributions of the σ(W) , σ(M) and σ(X) regulons to the lantibiotic resistome of Bacillus subtilis.
Mol Microbiol. 2013 Nov;90(3):502-18. doi: 10.1111/mmi.12380. Epub 2013 Sep 16.
6
The cell envelope stress-inducible operon modulates membrane properties and contributes to bacitracin resistance.
J Bacteriol. 2024 Mar 21;206(3):e0001524. doi: 10.1128/jb.00015-24. Epub 2024 Feb 7.
8
The Bacillus subtilis sigma(M) regulon and its contribution to cell envelope stress responses.
Mol Microbiol. 2008 Feb;67(4):830-48. doi: 10.1111/j.1365-2958.2007.06090.x. Epub 2008 Jan 2.
9
Resonance assignments of the cytoplasmic domain of ECF sigma factor W pathway protein YsdB from Bacillus subtilis.
Biomol NMR Assign. 2021 Apr;15(1):103-106. doi: 10.1007/s12104-020-09990-3. Epub 2021 Jan 4.

引用本文的文献

2
Fatty acid synthesis and utilization in gram-positive bacteria: insights from .
Microbiol Mol Biol Rev. 2025 Jun 25;89(2):e0006923. doi: 10.1128/mmbr.00069-23. Epub 2025 May 28.
6
The cell envelope stress-inducible operon modulates membrane properties and contributes to bacitracin resistance.
J Bacteriol. 2024 Mar 21;206(3):e0001524. doi: 10.1128/jb.00015-24. Epub 2024 Feb 7.
7
Crystal structures of the fatty acid biosynthesis initiation enzymes in Bacillus subtilis.
J Struct Biol. 2024 Mar;216(1):108065. doi: 10.1016/j.jsb.2024.108065. Epub 2024 Feb 3.
8
Time-Course Transcriptome Analysis of DB104 during Growth.
Microorganisms. 2023 Jul 28;11(8):1928. doi: 10.3390/microorganisms11081928.
9
A Decrease in Fatty Acid Synthesis Rescues Cells with Limited Peptidoglycan Synthesis Capacity.
mBio. 2023 Apr 25;14(2):e0047523. doi: 10.1128/mbio.00475-23. Epub 2023 Apr 5.

本文引用的文献

1
2
Membrane thickness cue for cold sensing in a bacterium.
Curr Biol. 2010 Sep 14;20(17):1539-44. doi: 10.1016/j.cub.2010.06.074. Epub 2010 Aug 12.
3
Differences in cold adaptation of Bacillus subtilis under anaerobic and aerobic conditions.
J Bacteriol. 2010 Aug;192(16):4164-71. doi: 10.1128/JB.00384-10. Epub 2010 Jun 25.
4
FabH selectivity for anteiso branched-chain fatty acid precursors in low-temperature adaptation in Listeria monocytogenes.
FEMS Microbiol Lett. 2009 Dec;301(2):188-92. doi: 10.1111/j.1574-6968.2009.01814.x. Epub 2009 Oct 7.
5
Reduced capacity of alternative sigmas to melt promoters ensures stringent promoter recognition.
Genes Dev. 2009 Oct 15;23(20):2426-36. doi: 10.1101/gad.1843709.
6
Stress-responsive systems set specific limits to the overproduction of membrane proteins in Bacillus subtilis.
Appl Environ Microbiol. 2009 Dec;75(23):7356-64. doi: 10.1128/AEM.01560-09. Epub 2009 Oct 9.
8
Elimination of the CDP-ethanolamine pathway disrupts hepatic lipid homeostasis.
J Biol Chem. 2009 Oct 2;284(40):27077-89. doi: 10.1074/jbc.M109.031336. Epub 2009 Aug 7.
9
Conversion of Bacillus subtilis OhrR from a 1-Cys to a 2-Cys peroxide sensor.
J Bacteriol. 2008 Sep;190(17):5738-45. doi: 10.1128/JB.00576-08. Epub 2008 Jun 27.
10
A malonyl-CoA-dependent switch in the bacterial response to a dysfunction of lipid metabolism.
Mol Microbiol. 2008 May;68(4):987-96. doi: 10.1111/j.1365-2958.2008.06202.x. Epub 2008 Apr 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验