Suppr超能文献

枯草芽孢杆菌在厌氧和好氧条件下的冷适应差异。

Differences in cold adaptation of Bacillus subtilis under anaerobic and aerobic conditions.

机构信息

Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic.

出版信息

J Bacteriol. 2010 Aug;192(16):4164-71. doi: 10.1128/JB.00384-10. Epub 2010 Jun 25.

Abstract

Bacillus subtilis, which grows under aerobic conditions, employs fatty acid desaturase (Des) to fluidize its membrane when subjected to temperature downshift. Des requires molecular oxygen for its activity, and its expression is regulated by DesK-DesR, a two-component system. Transcription of des is induced by the temperature downshift and is decreased when membrane fluidity is restored. B. subtilis is also capable of anaerobic growth by nitrate or nitrite respiration. We studied the mechanism of cold adaptation in B. subtilis under anaerobic conditions that were predicted to inhibit Des activity. We found that in anaerobiosis, in contrast to aerobic growth, the induction of des expression after temperature downshift (from 37 degrees C to 25 degrees C) was not downregulated. However, the transfer from anaerobic to aerobic conditions rapidly restored the downregulation. Under both aerobic and anaerobic conditions, the induction of des expression was substantially reduced by the addition of external fluidizing oleic acid and was fully dependent on the DesK-DesR two-component regulatory system. Fatty acid analysis proved that there was no desaturation after des induction under anaerobic conditions despite the presence of high levels of the des protein product, which was shown by immunoblot analysis. The cold adaptation of B. subtilis in anaerobiosis is therefore mediated exclusively by the increased anteiso/iso ratio of branched-chain fatty acids and not by the temporarily increased level of unsaturated fatty acids that is typical under aerobic conditions. The degrees of membrane fluidization, as measured by diphenylhexatriene fluorescence anisotropy, were found to be similar under both aerobic and anaerobic conditions.

摘要

枯草芽孢杆菌在有氧条件下生长,当温度下降时,它会利用脂肪酸去饱和酶(Des)使膜流动性增加。Des 的活性需要分子氧,其表达受双组分系统 DesK-DesR 调控。des 的转录受温度下降诱导,并在膜流动性恢复时减少。枯草芽孢杆菌还能够通过硝酸盐或亚硝酸盐呼吸进行厌氧生长。我们研究了在预测会抑制 Des 活性的厌氧条件下枯草芽孢杆菌的冷适应机制。我们发现,与有氧生长相比,在厌氧条件下,温度下降(从 37°C 到 25°C)后 des 表达的诱导并没有被下调。然而,从厌氧到有氧条件的转换会迅速恢复下调。在有氧和厌氧条件下,添加外部流动性油酸会大大减少 des 表达的诱导,并且完全依赖于 DesK-DesR 双组分调控系统。脂肪酸分析证明,尽管存在高水平的 des 蛋白产物,但在厌氧条件下没有发生去饱和,这通过免疫印迹分析得到证实。因此,枯草芽孢杆菌在厌氧条件下的冷适应完全是通过支链脂肪酸的 anteiso/iso 比例增加介导的,而不是像有氧条件下那样暂时增加不饱和脂肪酸的水平。通过二苯基十六碳三烯荧光各向异性测量的膜流动性程度,在有氧和厌氧条件下发现相似。

相似文献

1
Differences in cold adaptation of Bacillus subtilis under anaerobic and aerobic conditions.
J Bacteriol. 2010 Aug;192(16):4164-71. doi: 10.1128/JB.00384-10. Epub 2010 Jun 25.
2
Membrane fluidization by alcohols inhibits DesK-DesR signalling in Bacillus subtilis.
Biochim Biophys Acta Biomembr. 2018 Mar;1860(3):718-727. doi: 10.1016/j.bbamem.2017.12.015. Epub 2017 Dec 19.
3
Mechanism of membrane fluidity optimization: isothermal control of the Bacillus subtilis acyl-lipid desaturase.
Mol Microbiol. 2002 Sep;45(5):1379-88. doi: 10.1046/j.1365-2958.2002.03103.x.
5
Regulation of fatty acid desaturation in Bacillus subtilis.
Prostaglandins Leukot Essent Fatty Acids. 2003 Feb;68(2):187-90. doi: 10.1016/s0952-3278(02)00269-7.
6
Role of the Bacillus subtilis fatty acid desaturase in membrane adaptation during cold shock.
Mol Microbiol. 2001 Mar;39(5):1321-9. doi: 10.1111/j.1365-2958.2001.02322.x.
7
Thermal regulation of membrane lipid fluidity by a two-component system in Bacillus subtilis.
Biochem Mol Biol Educ. 2011 Sep-Oct;39(5):362-6. doi: 10.1002/bmb.20510. Epub 2011 Jul 21.
8
A Bacillus subtilis gene induced by cold shock encodes a membrane phospholipid desaturase.
J Bacteriol. 1998 Apr;180(8):2194-200. doi: 10.1128/JB.180.8.2194-2200.1998.

引用本文的文献

1
Fatty acid synthesis and utilization in gram-positive bacteria: insights from .
Microbiol Mol Biol Rev. 2025 Jun 25;89(2):e0006923. doi: 10.1128/mmbr.00069-23. Epub 2025 May 28.
2
CodY controls the SaeR/S two-component system by modulating branched-chain fatty acid synthesis in .
J Bacteriol. 2024 Nov 21;206(11):e0019124. doi: 10.1128/jb.00191-24. Epub 2024 Oct 9.
3
Quantification of membrane fluidity in bacteria using TIR-FCS.
Biophys J. 2024 Aug 20;123(16):2484-2495. doi: 10.1016/j.bpj.2024.06.012. Epub 2024 Jun 13.
4
A comprehensive comparative genomic analysis revealed that plant growth promoting traits are ubiquitous in strains of .
Front Microbiol. 2024 May 16;15:1395477. doi: 10.3389/fmicb.2024.1395477. eCollection 2024.
5
The cell envelope stress-inducible operon modulates membrane properties and contributes to bacitracin resistance.
J Bacteriol. 2024 Mar 21;206(3):e0001524. doi: 10.1128/jb.00015-24. Epub 2024 Feb 7.
6
Unsaturated fatty acid synthesis in bacteria: Mechanisms and regulation of canonical and remarkably noncanonical pathways.
Biochimie. 2024 Mar;218:137-151. doi: 10.1016/j.biochi.2023.09.007. Epub 2023 Sep 6.
7
Membrane fluidity adjusts the insertion of the transacylase PlsX to regulate phospholipid biosynthesis in Gram-positive bacteria.
J Biol Chem. 2020 Feb 14;295(7):2136-2147. doi: 10.1074/jbc.RA119.011122. Epub 2019 Dec 3.
9
Proteomic and Membrane Lipid Correlates of Reduced Host Defense Peptide.
Antibiotics (Basel). 2019 Sep 28;8(4):169. doi: 10.3390/antibiotics8040169.
10
Changes in Transcriptome of IP32953 Grown at 3 and 28°C Detected by RNA Sequencing Shed Light on Cold Adaptation.
Front Cell Infect Microbiol. 2018 Nov 27;8:416. doi: 10.3389/fcimb.2018.00416. eCollection 2018.

本文引用的文献

1
Emerging roles for lipids in shaping membrane-protein function.
Nature. 2009 May 21;459(7245):379-85. doi: 10.1038/nature08147.
2
Metabolic control of the membrane fluidity in Bacillus subtilis during cold adaptation.
Biochim Biophys Acta. 2008 Feb;1778(2):445-53. doi: 10.1016/j.bbamem.2007.11.012. Epub 2007 Dec 4.
3
Sigma L is important for cold shock adaptation of Bacillus subtilis.
J Bacteriol. 2006 Apr;188(8):3130-3. doi: 10.1128/JB.188.8.3130-3133.2006.
4
The Fnr regulon of Bacillus subtilis.
J Bacteriol. 2006 Feb;188(3):1103-12. doi: 10.1128/JB.188.3.1103-1112.2006.
6
The Bacillus subtilis acyl lipid desaturase is a delta5 desaturase.
J Bacteriol. 2003 May;185(10):3228-31. doi: 10.1128/JB.185.10.3228-3231.2003.
7
Genome-wide transcriptional profiling of the Bacillus subtilis cold-shock response.
Microbiology (Reading). 2002 Nov;148(Pt 11):3441-3455. doi: 10.1099/00221287-148-11-3441.
8
Membrane topology of the acyl-lipid desaturase from Bacillus subtilis.
J Biol Chem. 2002 Dec 13;277(50):48099-106. doi: 10.1074/jbc.M208960200. Epub 2002 Sep 24.
9
Mechanism of membrane fluidity optimization: isothermal control of the Bacillus subtilis acyl-lipid desaturase.
Mol Microbiol. 2002 Sep;45(5):1379-88. doi: 10.1046/j.1365-2958.2002.03103.x.
10
Response of Bacillus subtilis to cerulenin and acquisition of resistance.
J Bacteriol. 2001 May;183(10):3032-40. doi: 10.1128/JB.183.10.3032-3040.2001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验