Mansilla María Cecilia, de Mendoza Diego
Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Rosario, Argentina.
Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina.
Microbiol Mol Biol Rev. 2025 Jun 25;89(2):e0006923. doi: 10.1128/mmbr.00069-23. Epub 2025 May 28.
SUMMARYThe bacterial cytoplasmic membrane, consisting of roughly equal proportions of proteins and lipids, plays a crucial role in cellular growth, metabolism, and maintaining the cytoplasmic boundary. It is a dynamic, fluid matrix that separates intracellular compartments, where lipids and proteins coexist in a highly organized yet flexible arrangement. Membrane fluidity, defined as the inverse of viscosity, determines how rapidly molecules diffuse within the membrane at a given temperature. This property is vital for protein mobility and biomolecular interactions. Structurally, the membrane primarily comprises a lamellar lipid bilayer, with glycerophospholipids and fatty acids forming its core framework. In , a key model organism for studying gram-positive bacterial physiology, major membrane lipids include phospholipids, glycolipids, and lipoteichoic acids, the latter anchored to diacylglycerol glycolipids. This review examines the synthesis and regulation of membrane lipids in , with a focus on fatty acid biosynthesis, its diversification, and post-synthetic modifications such as desaturation. It also explores the production of phosphatidic acid and the integration of fatty acid and phospholipid biosynthesis. We review the well-characterized pathway of cold-induced membrane lipid modification in , arguably the best-studied model system for temperature sensing. This pathway is tightly linked to transcriptional responses triggered by changes in bilayer viscosity, detected by a membrane-associated thermosensor. Finally, this review highlights the importance of fatty acid biosynthesis in differentiation and its contributions to the production of biotin and lipoic acid, two universal cofactors essential for fatty acid synthesis and intermediary metabolism.
细菌细胞质膜由大致等量的蛋白质和脂质组成,在细胞生长、代谢及维持细胞质边界方面发挥着关键作用。它是一种动态的流体基质,分隔细胞内区室,脂质和蛋白质在其中以高度有序且灵活的排列方式共存。膜流动性定义为粘度的倒数,决定了分子在给定温度下在膜内扩散的速度。这一特性对蛋白质移动性和生物分子相互作用至关重要。在结构上,膜主要由层状脂质双分子层组成,甘油磷脂和脂肪酸构成其核心框架。在研究革兰氏阳性菌生理学的关键模式生物[具体菌名缺失]中,主要膜脂包括磷脂、糖脂和脂磷壁酸,后者锚定在二酰基甘油糖脂上。本综述考察了[具体菌名缺失]中膜脂的合成与调控,重点关注脂肪酸生物合成、其多样化以及诸如去饱和等合成后修饰。还探讨了磷脂酸的产生以及脂肪酸和磷脂生物合成的整合。我们综述了[具体菌名缺失]中冷诱导膜脂修饰的已充分表征的途径,它可说是温度感应研究得最透彻的模式系统。该途径与由膜相关热传感器检测到的双分子层粘度变化触发的转录反应紧密相连。最后,本综述强调了脂肪酸生物合成在[具体菌名缺失]分化中的重要性及其对生物素和硫辛酸产生的贡献,这两种普遍存在的辅因子对脂肪酸合成和中间代谢至关重要。