Department of Molecular Microbiology and Microbial Pathogenesis, Washington University in Saint Louis School of Medicine, 660 S Euclid, St Louis, MO 63110-1010, USA.
Mol Microbiol. 2011 Jun;80(6):1516-29. doi: 10.1111/j.1365-2958.2011.07660.x. Epub 2011 May 5.
The QseC sensor kinase regulates virulence in multiple Gram-negative pathogens, by controlling the activity of the QseB response regulator. We have previously shown that qseC deletion interferes with dephosphorylation of QseB thus unleashing what appears to be an uncontrolled positive feedback loop stimulating increased QseB levels. Deletion of QseC downregulates virulence gene expression and attenuates enterohaemorrhagic and uropathogenic Escherichia coli (EHEC and UPEC), Salmonella typhimurium, and Francisella tularensis. Given that these pathogens employ different infection strategies and virulence factors, we used genome-wide approaches to better understand the role of the QseBC interplay in pathogenesis. We found that deletion of qseC results in misregulation of nucleotide, amino acid, and carbon metabolism. Comparable metabolic changes are seen in EHEC ΔqseC, suggesting that deletion of qseC confers similar pleiotropic effects in these two different pathogens. Disruption of representative metabolic enzymes phenocopied UPEC ΔqseC in vivo and resulted in virulence factor downregulation. We thus propose that in the absence of QseC, the constitutively active QseB leads to pleiotropic effects, impairing bacterial metabolism, and thereby attenuating virulence. These findings provide a basis for the development of antimicrobials targeting the phosphatase activity of QseC, as a means to attenuate a wide range of QseC-bearing pathogens.
QseC 传感器激酶通过控制 QseB 反应调节剂的活性来调节多种革兰氏阴性病原体的毒力。我们之前已经表明,qseC 缺失会干扰 QseB 的去磷酸化,从而释放出似乎是不受控制的正反馈循环,刺激 QseB 水平的增加。qseC 的缺失下调了毒力基因的表达,并减弱了肠出血性和尿路致病性大肠杆菌(EHEC 和 UPEC)、鼠伤寒沙门氏菌和土拉弗朗西斯菌的毒力。鉴于这些病原体采用不同的感染策略和毒力因子,我们使用全基因组方法来更好地理解 QseBC 相互作用在发病机制中的作用。我们发现 qseC 的缺失导致核苷酸、氨基酸和碳代谢的失调。EHEC ΔqseC 中也出现了类似的代谢变化,这表明 qseC 的缺失在这两种不同的病原体中赋予了类似的多效性效应。代表性代谢酶的破坏在体内模拟了 UPEC ΔqseC,导致毒力因子下调。因此,我们提出,在没有 QseC 的情况下,组成性激活的 QseB 导致多效性效应,损害细菌代谢,从而减弱毒力。这些发现为开发针对 QseC 的磷酸酶活性的抗菌药物提供了依据,作为减弱广泛存在的 QseC 携带病原体的一种手段。