Suppr超能文献

二氢乳清酸脱氢酶与支链α-酮酸脱氢酶复合物亚基结合域之间弱相互作用的结构和热力学基础。

Structural and thermodynamic basis for weak interactions between dihydrolipoamide dehydrogenase and subunit-binding domain of the branched-chain alpha-ketoacid dehydrogenase complex.

机构信息

Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.

出版信息

J Biol Chem. 2011 Jul 1;286(26):23476-88. doi: 10.1074/jbc.M110.202960. Epub 2011 May 3.

Abstract

The purified mammalian branched-chain α-ketoacid dehydrogenase complex (BCKDC), which catalyzes the oxidative decarboxylation of branched-chain α-keto acids, is essentially devoid of the constituent dihydrolipoamide dehydrogenase component (E3). The absence of E3 is associated with the low affinity of the subunit-binding domain of human BCKDC (hSBDb) for hE3. In this work, sequence alignments of hSBDb with the E3-binding domain (E3BD) of the mammalian pyruvate dehydrogenase complex show that hSBDb has an arginine at position 118, where E3BD features an asparagine. Substitution of Arg-118 with an asparagine increases the binding affinity of the R118N hSBDb variant (designated hSBDb*) for hE3 by nearly 2 orders of magnitude. The enthalpy of the binding reaction changes from endothermic with the wild-type hSBDb to exothermic with the hSBDb* variant. This higher affinity interaction allowed the determination of the crystal structure of the hE3/hSBDb* complex to 2.4-Å resolution. The structure showed that the presence of Arg-118 poses a unique, possibly steric and/or electrostatic incompatibility that could impede E3 interactions with the wild-type hSBDb. Compared with the E3/E3BD structure, the hE3/hSBDb* structure has a smaller interfacial area. Solution NMR data corroborated the interactions of hE3 with Arg-118 and Asn-118 in wild-type hSBDb and mutant hSBDb*, respectively. The NMR results also showed that the interface between hSBDb and hE3 does not change significantly from hSBDb to hSBDb*. Taken together, our results represent a starting point for explaining the long standing enigma that the E2b core of the BCKDC binds E3 far more weakly relative to other α-ketoacid dehydrogenase complexes.

摘要

纯化的哺乳动物支链α-酮酸脱氢酶复合物(BCKDC),能催化支链α-酮酸的氧化脱羧作用,其组成成分二氢硫辛酰胺脱氢酶(E3)几乎完全缺失。E3 的缺失与人类 BCKDC 亚基结合域(hSBDb)与 hE3 结合的低亲和力有关。在这项工作中,hSBDb 与哺乳动物丙酮酸脱氢酶复合物的 E3 结合域(E3BD)的序列比对表明,hSBDb 在位置 118 处有一个精氨酸,而 E3BD 处有一个天冬酰胺。用天冬酰胺取代 Arg-118 ,使得 R118N hSBDb 变体(命名为 hSBDb*)与 hE3 的结合亲和力提高了近 2 个数量级。与野生型 hSBDb 相比,结合反应的焓变为放热反应。这种更高的亲和力相互作用使得 hE3/hSBDb复合物的晶体结构能够解析至 2.4-Å 分辨率。结构表明,Arg-118 的存在造成了独特的、可能是空间和/或静电的不兼容性,这可能会阻碍 E3 与野生型 hSBDb 的相互作用。与 E3/E3BD 结构相比,hE3/hSBDb结构的界面面积更小。溶液 NMR 数据分别证实了 hE3 与野生型 hSBDb 的 Arg-118 和 Asn-118 以及突变体 hSBDb的相互作用。NMR 结果还表明,hSBDb 与 hE3 之间的界面从 hSBDb 到 hSBDb没有明显变化。综上所述,我们的结果为解释长期以来的谜团提供了一个起点,即 BCKDC 的 E2b 核心与其他α-酮酸脱氢酶复合物相比,与 E3 的结合强度要弱得多。

相似文献

4
Characterization of interactions of dihydrolipoamide dehydrogenase with its binding protein in the human pyruvate dehydrogenase complex.
Biochem Biophys Res Commun. 2010 May 7;395(3):416-9. doi: 10.1016/j.bbrc.2010.04.038. Epub 2010 Apr 10.
6
Human dihydrolipoamide dehydrogenase (E3) deficiency: Novel insights into the structural basis and molecular pathomechanism.
Neurochem Int. 2018 Jul;117:5-14. doi: 10.1016/j.neuint.2017.05.018. Epub 2017 Jun 2.
7
The role of amino acids T148 and R281 in human dihydrolipoamide dehydrogenase.
J Biomed Sci. 2008 Jan;15(1):37-46. doi: 10.1007/s11373-007-9208-9. Epub 2007 Oct 25.
8
Crystal structures of the disease-causing D444V mutant and the relevant wild type human dihydrolipoamide dehydrogenase.
Free Radic Biol Med. 2018 Aug 20;124:214-220. doi: 10.1016/j.freeradbiomed.2018.06.008. Epub 2018 Jun 20.
10
Interaction of E1 and E3 components with the core proteins of the human pyruvate dehydrogenase complex.
J Mol Catal B Enzym. 2009 Nov 1;61(1-2):2-6. doi: 10.1016/j.molcatb.2009.05.001.

引用本文的文献

4
The structure and evolutionary diversity of the fungal E3-binding protein.
Commun Biol. 2023 May 3;6(1):480. doi: 10.1038/s42003-023-04854-7.
7
Dihydrolipoamide dehydrogenase, pyruvate oxidation, and acetylation-dependent mechanisms intersecting drug iatrogenesis.
Cell Mol Life Sci. 2021 Dec;78(23):7451-7468. doi: 10.1007/s00018-021-03996-3. Epub 2021 Oct 31.
10
A multipronged approach unravels unprecedented protein-protein interactions in the human 2-oxoglutarate dehydrogenase multienzyme complex.
J Biol Chem. 2018 Dec 14;293(50):19213-19227. doi: 10.1074/jbc.RA118.005432. Epub 2018 Oct 15.

本文引用的文献

1
Determination of protein complex stoichiometry through multisignal sedimentation velocity experiments.
Anal Biochem. 2010 Dec 1;407(1):89-103. doi: 10.1016/j.ab.2010.07.017. Epub 2010 Jul 25.
2
Features and development of Coot.
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501. doi: 10.1107/S0907444910007493. Epub 2010 Mar 24.
3
PHENIX: a comprehensive Python-based system for macromolecular structure solution.
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21. doi: 10.1107/S0907444909052925. Epub 2010 Jan 22.
4
MolProbity: all-atom structure validation for macromolecular crystallography.
Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21. doi: 10.1107/S0907444909042073. Epub 2009 Dec 21.
5
Subunit and catalytic component stoichiometries of an in vitro reconstituted human pyruvate dehydrogenase complex.
J Biol Chem. 2009 May 8;284(19):13086-98. doi: 10.1074/jbc.M806563200. Epub 2009 Feb 24.
6
Cryptic proteolytic activity of dihydrolipoamide dehydrogenase.
Proc Natl Acad Sci U S A. 2007 Apr 10;104(15):6158-63. doi: 10.1073/pnas.0610618104. Epub 2007 Apr 2.
8
HKL-3000: the integration of data reduction and structure solution--from diffraction images to an initial model in minutes.
Acta Crystallogr D Biol Crystallogr. 2006 Aug;62(Pt 8):859-66. doi: 10.1107/S0907444906019949. Epub 2006 Jul 18.
10
Lessons from genetic disorders of branched-chain amino acid metabolism.
J Nutr. 2006 Jan;136(1 Suppl):243S-9S. doi: 10.1093/jn/136.1.243S.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验