Suppr超能文献

通过对致病酶变体的结构分析揭示人类二氢硫辛酰胺脱氢酶缺乏症的潜在分子改变。

Underlying molecular alterations in human dihydrolipoamide dehydrogenase deficiency revealed by structural analyses of disease-causing enzyme variants.

机构信息

Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1094, Hungary.

Macromolecular Crystallography, Helmholtz-Zentrum Berlin, 12489, Berlin, Germany.

出版信息

Hum Mol Genet. 2019 Oct 15;28(20):3339-3354. doi: 10.1093/hmg/ddz177.

Abstract

Human dihydrolipoamide dehydrogenase (hLADH, hE3) deficiency (OMIM# 246900) is an often prematurely lethal genetic disease usually caused by inactive or partially inactive hE3 variants. Here we report the crystal structure of wild-type hE3 at an unprecedented high resolution of 1.75 Å and the structures of six disease-causing hE3 variants at resolutions ranging from 1.44 to 2.34 Å. P453L proved to be the most deleterious substitution in structure as aberrations extensively compromised the active site. The most prevalent G194C-hE3 variant primarily exhibited structural alterations close to the substitution site, whereas the nearby cofactor-binding residues were left unperturbed. The G426E substitution mainly interfered with the local charge distribution introducing dynamics to the substitution site in the dimer interface; G194C and G426E both led to minor structural changes. The R460G, R447G and I445M substitutions all perturbed a solvent accessible channel, the so-called H+/H2O channel, leading to the active site. Molecular pathomechanisms of enhanced reactive oxygen species (ROS) generation and impaired binding to multienzyme complexes were also addressed according to the structural data for the relevant mutations. In summary, we present here for the first time a comprehensive study that links three-dimensional structures of disease-causing hE3 variants to residual hLADH activities, altered capacities for ROS generation, compromised affinities for multienzyme complexes and eventually clinical symptoms. Our results may serve as useful starting points for future therapeutic intervention approaches.

摘要

人二氢硫辛酰胺脱氢酶(hLADH,hE3)缺乏症(OMIM#246900)是一种常导致早发性致命的遗传疾病,通常由无活性或部分无活性的 hE3 变体引起。在这里,我们报告了野生型 hE3 的晶体结构,分辨率达到了前所未有的 1.75Å,以及六个致病 hE3 变体的结构,分辨率范围从 1.44 到 2.34Å。P453L 被证明是结构中最具破坏性的取代,异常广泛地破坏了活性部位。最常见的 G194C-hE3 变体主要表现出靠近取代部位的结构改变,而附近的辅因子结合残基则未受干扰。G426E 取代主要干扰局部电荷分布,在二聚体界面的取代部位引入动力学;G194C 和 G426E 都导致了较小的结构变化。R460G、R447G 和 I445M 取代都干扰了一个可及溶剂的通道,即所谓的 H+/H2O 通道,导致与活性部位连接。根据相关突变的结构数据,还探讨了增强活性氧(ROS)生成和与多酶复合物结合受损的分子病理机制。总之,我们在这里首次全面研究了致病 hE3 变体的三维结构与残留 hLADH 活性、ROS 生成能力改变、多酶复合物结合亲和力降低以及最终临床症状之间的关系。我们的研究结果可能为未来的治疗干预方法提供有用的起点。

相似文献

引用本文的文献

5
Roles of Dihydrolipoamide Dehydrogenase in Health and Disease.二氢硫辛酰胺脱氢酶在健康和疾病中的作用。
Antioxid Redox Signal. 2023 Oct;39(10-12):794-806. doi: 10.1089/ars.2022.0181. Epub 2023 Aug 14.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验